MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance filter

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
8685.27707700 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
8685.27706800 (ANTIGONE)
8685.27706800 (BARON)
8685.27707700 (COUENNE)
8685.27707700 (LINDO)
8685.27706900 (SCIP)
References Edgar, T F, Himmelblau, D M, and Lasdon, L S, Optimization of Chemical Processes, McGraw Hill, Boston, 2001.
Source Housam Binous
Added to library 31 Jul 2001
Problem type NLP
#Variables 2
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 2
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type nonlinear
Objective curvature indefinite
#Nonzeros in Objective 2
#Nonlinear Nonzeros in Objective 2
#Constraints 1
#Linear Constraints 0
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 1
Operands in Gen. Nonlin. Functions div log10 mul vcpower
Constraints curvature indefinite
#Nonzeros in Jacobian 2
#Nonlinear Nonzeros in Jacobian 1
#Nonzeros in (Upper-Left) Hessian of Lagrangian 4
#Nonzeros in Diagonal of Hessian of Lagrangian 2
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 8.6000e-01
Maximal coefficient 1.0000e+07
Infeasibility of initial point 390.2
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          2        2        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          3        3        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*          5        2        3        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,objvar;

Equations  e1,e2;


e1.. -(116*(10000000/((10 + x1/x2)*(-288000 + 1440*x1)))**0.86 + 47300*x1/(-200
      + x1)) + objvar =E= -47300;

e2.. -2100*log10(41.1522633744856/x2) + x1 =E= 0;

* set non-default bounds
x1.lo = 900;
x2.lo = 10;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0