MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ghg_1veh
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 7.78163488 (ANTIGONE) 7.78163401 (BARON) 7.78162290 (COUENNE) 7.78163384 (LINDO) 7.78162582 (SCIP) -26.23077338 (SHOT) |
Referencesⓘ | Shiau, Ching-Shin N and Michalek, Jeremy J, Global Optimization of Plug-In Hybrid Vehicle Design and Allocation to Minimize Life Cycle Greenhouse Gas Emissions, ASME Journal of Mechanical Design, 133:8, 2011, 084502. |
Applicationⓘ | Optimal vehicle allocation for minimizing greenhouse gas emissions |
Added to libraryⓘ | 29 Aug 2011 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 29 |
#Binary Variablesⓘ | 12 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 24 |
#Nonlinear Binary Variablesⓘ | 10 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | signomial |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 22 |
#Nonlinear Nonzeros in Objectiveⓘ | 20 |
#Constraintsⓘ | 37 |
#Linear Constraintsⓘ | 10 |
#Quadratic Constraintsⓘ | 9 |
#Polynomial Constraintsⓘ | 9 |
#Signomial Constraintsⓘ | 2 |
#General Nonlinear Constraintsⓘ | 7 |
Operands in Gen. Nonlin. Functionsⓘ | div exp mul |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 108 |
#Nonlinear Nonzeros in Jacobianⓘ | 71 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 261 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 9 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 24 |
Maximal blocksize in Hessian of Lagrangianⓘ | 24 |
Average blocksize in Hessian of Lagrangianⓘ | 24.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 9.4030e-05 |
Maximal coefficientⓘ | 1.5000e+05 |
Infeasibility of initial pointⓘ | 2.931 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 38 18 9 11 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 30 18 12 0 0 0 0 0 * FX 1 * * Nonzero counts * Total const NL DLL * 131 40 91 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,objvar; Positive Variables x24,x25,x26,x27,x28,x29; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38; e1.. -21.6*x15*x16*x20 + x24 =E= 0; e2.. -(0.007852585706*x13**3 + 0.154288922601*x14**3 + 0.352933730854*x15**3 - 0.004816150342*x13**2*x14 - 0.00547943134*x14**2*x13 - 0.02533808214*x13** 2*x15 + 0.00021201136*x15**2*x13 - 0.057118497613*x14**2*x15 - 0.042739509965*x15**2*x14 - 0.01583097252*x13*x14*x15 - 0.001028174658*x13 **2 - 0.805369774847*x14**2 - 0.655580550098*x15**2 + 0.057270405947*x13* x14 + 0.07973036236*x13*x15 + 0.342091579946*x14*x15 - 0.191345333621*x13 + 1.188971392024*x14 - 0.346682012779*x15) + x20 =E= 4.960068215723; e3.. -(2.21406746341*x13**3 + 1.086659693552*x14**3 + 5.577874978662*x15**3 - 0.815241697738*x13**2*x14 + 0.509578110533*x14**2*x13 + 1.561758113326*x13 **2*x15 + 2.212321055022*x15**2*x13 - 0.612567680918*x14**2*x15 + 0.254008083604*x15**2*x14 - 0.159429747244*x13*x14*x15 - 8.905599398536* x13**2 - 6.095001164559*x14**2 - 15.207539664993*x15**2 + 0.089172114876* x13*x14 - 3.273526677614*x13*x15 + 2.498376358946*x14*x15 + 2.621894664006 *x13 + 9.284846067558*x14 + 5.837143728557*x15) + x21 =E= 57.679680208231; e4.. -(1.456640469666*x13**3 - 5.495718264905*x14**3 - 28.456261951645*x15**3 + 0.912917970314*x13**2*x14 - 0.88119920631*x14**2*x13 - 1.049763024383* x13**2*x15 - 0.308107344863*x15**2*x13 + 2.043536297441*x14**2*x15 + 15.609611231641*x15**2*x14 + 0.336486837518*x13*x14*x15 - 4.634160849469* x13**2 + 31.478262635483*x14**2 + 34.016843490037*x15**2 + 1.153148892739* x13*x14 + 1.168601192983*x13*x15 - 32.056936006397*x14*x15 + 3.405095041238*x13 - 54.472915571467*x14 + 9.56987912824*x15) + x17 =E= 44.230616625681; e5.. -(3.334445194766*x13**3 - 2.265666208775*x14**3 - 20.256566414583*x15**3 + 0.413782262402*x13**2*x14 - 3.523622273943*x14**2*x13 - 0.285910055687* x13**2*x15 - 10.110726634622*x15**2*x13 + 1.95072196814*x14**2*x15 + 10.308512463418*x15**2*x14 + 5.808426325827*x13*x14*x15 - 6.932398033967* x13**2 + 15.80019426934*x14**2 + 39.197963873266*x15**2 + 7.900706395772* x13*x14 + 6.58186092156*x13*x15 - 30.119438887106*x14*x15 - 6.733798415788 *x13 - 26.385308892431*x14 - 4.098268423019*x15) + x18 =E= 32.102172356117 ; e6.. -(-0.194075741585*x13**2 - 0.004843420334*x14**2 + 0.04736686635*x15**2 + 9.4029979e-5*x13*x14 + 0.011329651793*x13*x15 - 0.001017352942*x14*x15 + 0.382275988592*x13 + 0.019484588535*x14 - 0.077357069039*x15) + x19 =E= 0.140278656706; e7.. x17 =L= 11; e8.. x18 =L= 11; e9.. x19 =G= 0.32; e10.. exp(-0.029595*x24)*(33.7894914681534 + x24) + x26 =E= 33.7894914681534; e11.. exp(-0.029595*x24) + x27 =E= 1; e12.. -0.134723681728774*(0.010073140669*x13**2 + 0.011394190823*x14**2 + 0.052910213683*x15**2 + 0.000159410872*x13*x14 + 0.008036404292*x13*x15 - 0.003423392047*x14*x15 + 0.097124049148*x13 + 0.03829180344*x14 + 0.370440556286*x15) + x22 =E= 0.29587368369345; e13.. -0.134723681728774*(0.46598008632*x13**2 - 0.00797004615*x14**2 - 0.01779288613*x15**2 - 0.01429434551*x13*x14 - 0.03832188467*x13*x15 + 0.00970510229*x14*x15 - 0.88981702163*x13 + 0.07730602595*x14 + 0.39988032723*x15) + x23 =E= 0.194162178290626; e14.. -(2715.7894736842/x20 + 5187*x22 - 5187*x23)*x24/(4320*x15 - 5187*x23) + x25 =E= 0; e15.. exp(-0.029595*x25)*(33.7894914681534 + x25) + x28 =E= 33.7894914681534; e16.. exp(-0.029595*x25) + x29 =E= 1; e17.. b1 + b2 + b3 =E= 1; e18.. b1*x24 =L= 0; e19.. b2*x24 =G= 0; e20.. b2*(-200 + x24) =L= 0; e21.. b3*(-200 + x24) =G= 0; e22.. b4 + b5 + b6 =E= 1; e23.. b8*b4*x25 =L= 0; e24.. b8*b5*x25 =G= 0; e25.. b8*b5*(-200 + x25) =L= 0; e26.. b8*b6*(-200 + x25) =G= 0; e27.. b7 + b8 + b9 =E= 1; e28.. (-150000 + 124927.703875072*x15/x23)*b7 =L= 0; e29.. (-150000 + 124927.703875072*x15/x23)*b8 =G= 0; e30.. (150000 - 4320*x15/(0.0172/x20 + 0.03458*x22))*b8 =G= 0; e31.. (150000 - 4320*x15/(0.0172/x20 + 0.03458*x22))*b9 =L= 0; e32.. b7*(-1 + b4) =G= 0; e33.. b9*(-1 + b4) =G= 0; e34.. b2 + b4 + b8 =L= 2; e35.. b3 + b4 + b8 =L= 2; e36.. b3 + b5 + b8 =L= 2; e37.. -(1.87912853526074 + (376.046780997472/x21 + 0.997312113279821*( 0.854659090909091/x20 - 11.34/x21)*x24)*b1 + (0.854659090909091*x26/x20 + (376.046780997472 - 11.34*x26)/x21 + (0.854659090909091/x20 - 11.34/ x21)*x24*(0.997312113279821 - x27))*b2 + 28.341428570246*b3/x20 + ( 0.573023666281862*b4*b8 + 0.573023666281862*b9)*x15 + b1*b5*b8*(0.6*( 0.03458*x23*x28 + (0.0181052631578947/x20 + 0.03458*x22 - 0.03458*x23)* x24*x29) + 0.01728*x15*(33.1610917987189 - x28)) + b2*b5*b8*(0.6*(( 0.0181052631578947/x20 + 0.03458*x22)*x26 + 0.03458*x23*(x28 - x26) + ( 0.0181052631578947/x20 + 0.03458*x22 - 0.03458*x23)*x24*(x29 - x27)) + 0.01728*x15*(33.1610917987189 - x28)) + 0.6*(b1*b6*b8 + b1*b7)*(( 0.0180565982614873/x20 + 0.0344870528772162*x22 - 0.0344870528772162*x23) *x24 + 1.1467105543997*x23) + 0.6*(b2*b6*b8 + b2*b7)*((0.0181052631578947 /x20 + 0.03458*x22)*x26 + 0.03458*x23*(33.1610917987189 - x26) + ( 0.0181052631578947/x20 + 0.03458*x22 - 0.03458*x23)*x24*( 0.997312113279821 - x27)) + 19.8966550792313*(b3*b6*b8 + b3*b7)*( 0.0181052631578947/x20 + 0.03458*x22))*b10 - 8.20275610163388*b11 - 14.6264770436496*b12 + objvar =E= 0; e38.. b10 + b11 + b12 =E= 1; * set non-default bounds x13.lo = 0.526315789473684; x13.up = 1.05263157894737; x14.lo = 0.961538461538462; x14.up = 2.11538461538462; x15.lo = 0.2; x15.up = 1; x16.fx = 0.8; x17.lo = 6; x17.up = 13; x18.lo = 6; x18.up = 13; x19.lo = 0.26; x19.up = 0.35; x20.lo = 4.9; x20.up = 5.5; x21.lo = 55; x21.up = 63; x22.lo = 0.296392099803303; x22.up = 0.404171045186323; x23.lo = 0.134723681728774; x23.up = 0.229030258938916; x24.up = 90; x25.up = 200; x26.up = 26; x27.up = 1; x28.up = 34.1; x29.up = 1; * set non-default levels b2.l = 1; b5.l = 1; b8.l = 1; b10.l = 1; x13.l = 1; x14.l = 1; x15.l = 0.5; x17.l = 13; x18.l = 10.9460692020431; x19.l = 0.3215334333865; x20.l = 5.218428550001; x21.l = 58.1078648496005; x22.l = 0.344077403769737; x23.l = 0.16888643257787; x24.l = 45.0872226720086; x25.l = 49.2705196815703; x26.l = 13.01907481523; x27.l = 0.736672389572227; x28.l = 14.4644383631733; x29.l = 0.767336256792154; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91