MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance gkocis

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
-1.92309874 p1 ( gdx sol )
(infeas: 2e-14)
Other points (infeas > 1e-08)  
Dual Bounds
-1.92309874 (ANTIGONE)
-1.92309874 (BARON)
-1.92309874 (COUENNE)
-1.92309874 (LINDO)
-1.92309874 (SCIP)
-1.92309925 (SHOT)
References Kocis, Gary R and Grossmann, I E, Relaxation Strategy for the Structural Optimization of Process Flow Sheets, Industrial and Engineering Chemistry Research, 26:9, 1987, 1869-1880.
Source MINOPT Model Library model kocis87-2.dat
Added to library 01 May 2001
Problem type MBNLP
#Variables 11
#Binary Variables 3
#Integer Variables 0
#Nonlinear Variables 2
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 8
#Nonlinear Nonzeros in Objective 0
#Constraints 8
#Linear Constraints 6
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 2
Operands in Gen. Nonlin. Functions log
Constraints curvature indefinite
#Nonzeros in Jacobian 19
#Nonlinear Nonzeros in Jacobian 2
#Nonzeros in (Upper-Left) Hessian of Lagrangian 2
#Nonzeros in Diagonal of Hessian of Lagrangian 2
#Blocks in Hessian of Lagrangian 2
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 1
Average blocksize in Hessian of Lagrangian 1.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 9.0000e-01
Maximal coefficient 1.1000e+01
Infeasibility of initial point 0
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          9        6        0        3        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         12        9        3        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         28       26        2        0
*
*  Solve m using MINLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,b9,b10,b11,objvar;

Positive Variables  x1,x2,x3,x4,x5,x6,x7,x8;

Binary Variables  b9,b10,b11;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9;


e1..  - 1.8*x1 - 7*x5 - x6 - 1.2*x7 + 11*x8 - 3.5*b9 - b10 - 1.5*b11 + objvar
      =E= 0;

e2.. -log(1 + x2) + x6 =E= 0;

e3.. -1.2*log(1 + x3) + x7 =E= 0;

e4..  - 0.9*x4 + x8 =E= 0;

e5..  - x4 + x5 + x6 + x7 =E= 0;

e6..    x1 - x2 - x3 =E= 0;

e7..    x4 - 5*b9 =L= 0;

e8..    x2 - 5*b10 =L= 0;

e9..    x3 - 5*b11 =L= 0;

* set non-default bounds
x6.up = 5;
x8.up = 1;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0