MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance graphpart_clique-30
This is a quadratic model for the graph partitioning problem. The graphs are taken from the publication of Ghaddar et al. We used 3 parts of the partition to generate the quadratic instances. The model assigns each node to one of the three parts. Hence, the model is symmetric, which should probably be used in a solution algorithm.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 494.99999950 (ANTIGONE) 495.00000000 (BARON) 495.00000000 (COUENNE) 495.00000000 (CPLEX) 495.00000000 (GUROBI) 495.00000000 (LINDO) 495.00000000 (SCIP) 495.00000000 (SHOT) |
Referencesⓘ | Ghaddar, Bissan, Anjos, Miguel F, and Liers, Frauke, A Branch-and-Cut Algorithm based on Semidefinite Programming for the Minimum k-Partition Problem, Annals of Operations Research, 188:1, 2011, 155-174. |
Sourceⓘ | POLIP instance graphpart/data_clique_30.dimacs |
Applicationⓘ | Graph Partitioning |
Added to libraryⓘ | 26 Feb 2014 |
Problem typeⓘ | BQP |
#Variablesⓘ | 90 |
#Binary Variablesⓘ | 90 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 90 |
#Nonlinear Binary Variablesⓘ | 90 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 90 |
#Nonlinear Nonzeros in Objectiveⓘ | 90 |
#Constraintsⓘ | 30 |
#Linear Constraintsⓘ | 30 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 90 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 2610 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 3 |
Minimal blocksize in Hessian of Lagrangianⓘ | 30 |
Maximal blocksize in Hessian of Lagrangianⓘ | 30 |
Average blocksize in Hessian of Lagrangianⓘ | 30.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 2.9000e+01 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 31 31 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 91 1 90 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 181 91 90 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36 ,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53 ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70 ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87 ,b88,b89,b90,objvar; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17 ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34 ,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51 ,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68 ,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85 ,b86,b87,b88,b89,b90; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31; e1.. b1 + b2 + b3 =E= 1; e2.. b4 + b5 + b6 =E= 1; e3.. b7 + b8 + b9 =E= 1; e4.. b10 + b11 + b12 =E= 1; e5.. b13 + b14 + b15 =E= 1; e6.. b16 + b17 + b18 =E= 1; e7.. b19 + b20 + b21 =E= 1; e8.. b22 + b23 + b24 =E= 1; e9.. b25 + b26 + b27 =E= 1; e10.. b28 + b29 + b30 =E= 1; e11.. b31 + b32 + b33 =E= 1; e12.. b34 + b35 + b36 =E= 1; e13.. b37 + b38 + b39 =E= 1; e14.. b40 + b41 + b42 =E= 1; e15.. b43 + b44 + b45 =E= 1; e16.. b46 + b47 + b48 =E= 1; e17.. b49 + b50 + b51 =E= 1; e18.. b52 + b53 + b54 =E= 1; e19.. b55 + b56 + b57 =E= 1; e20.. b58 + b59 + b60 =E= 1; e21.. b61 + b62 + b63 =E= 1; e22.. b64 + b65 + b66 =E= 1; e23.. b67 + b68 + b69 =E= 1; e24.. b70 + b71 + b72 =E= 1; e25.. b73 + b74 + b75 =E= 1; e26.. b76 + b77 + b78 =E= 1; e27.. b79 + b80 + b81 =E= 1; e28.. b82 + b83 + b84 =E= 1; e29.. b85 + b86 + b87 =E= 1; e30.. b88 + b89 + b90 =E= 1; e31.. b1*b4 + 2*b1*b7 + 3*b1*b10 + 4*b1*b13 + 5*b1*b16 + 6*b1*b19 + 7*b1*b22 + 8*b1*b25 + 9*b1*b28 + 10*b1*b31 + 11*b1*b34 + 12*b1*b37 + 13*b1*b40 + 14* b1*b43 + 15*b1*b46 + 16*b1*b49 + 17*b1*b52 + 18*b1*b55 + 19*b1*b58 + 20* b1*b61 + 21*b1*b64 + 22*b1*b67 + 23*b1*b70 + 24*b1*b73 + 25*b1*b76 + 26* b1*b79 + 27*b1*b82 + 28*b1*b85 + 29*b1*b88 + b2*b5 + 2*b2*b8 + 3*b2*b11 + 4*b2*b14 + 5*b2*b17 + 6*b2*b20 + 7*b2*b23 + 8*b2*b26 + 9*b2*b29 + 10* b2*b32 + 11*b2*b35 + 12*b2*b38 + 13*b2*b41 + 14*b2*b44 + 15*b2*b47 + 16* b2*b50 + 17*b2*b53 + 18*b2*b56 + 19*b2*b59 + 20*b2*b62 + 21*b2*b65 + 22* b2*b68 + 23*b2*b71 + 24*b2*b74 + 25*b2*b77 + 26*b2*b80 + 27*b2*b83 + 28* b2*b86 + 29*b2*b89 + b3*b6 + 2*b3*b9 + 3*b3*b12 + 4*b3*b15 + 5*b3*b18 + 6 *b3*b21 + 7*b3*b24 + 8*b3*b27 + 9*b3*b30 + 10*b3*b33 + 11*b3*b36 + 12*b3* b39 + 13*b3*b42 + 14*b3*b45 + 15*b3*b48 + 16*b3*b51 + 17*b3*b54 + 18*b3* b57 + 19*b3*b60 + 20*b3*b63 + 21*b3*b66 + 22*b3*b69 + 23*b3*b72 + 24*b3* b75 + 25*b3*b78 + 26*b3*b81 + 27*b3*b84 + 28*b3*b87 + 29*b3*b90 + b4*b7 + 2*b4*b10 + 3*b4*b13 + 4*b4*b16 + 5*b4*b19 + 6*b4*b22 + 7*b4*b25 + 8*b4 *b28 + 9*b4*b31 + 10*b4*b34 + 11*b4*b37 + 12*b4*b40 + 13*b4*b43 + 14*b4* b46 + 15*b4*b49 + 16*b4*b52 + 17*b4*b55 + 18*b4*b58 + 19*b4*b61 + 20*b4* b64 + 21*b4*b67 + 22*b4*b70 + 23*b4*b73 + 24*b4*b76 + 25*b4*b79 + 26*b4* b82 + 27*b4*b85 + 28*b4*b88 + b5*b8 + 2*b5*b11 + 3*b5*b14 + 4*b5*b17 + 5* b5*b20 + 6*b5*b23 + 7*b5*b26 + 8*b5*b29 + 9*b5*b32 + 10*b5*b35 + 11*b5* b38 + 12*b5*b41 + 13*b5*b44 + 14*b5*b47 + 15*b5*b50 + 16*b5*b53 + 17*b5* b56 + 18*b5*b59 + 19*b5*b62 + 20*b5*b65 + 21*b5*b68 + 22*b5*b71 + 23*b5* b74 + 24*b5*b77 + 25*b5*b80 + 26*b5*b83 + 27*b5*b86 + 28*b5*b89 + b6*b9 + 2*b6*b12 + 3*b6*b15 + 4*b6*b18 + 5*b6*b21 + 6*b6*b24 + 7*b6*b27 + 8*b6 *b30 + 9*b6*b33 + 10*b6*b36 + 11*b6*b39 + 12*b6*b42 + 13*b6*b45 + 14*b6* b48 + 15*b6*b51 + 16*b6*b54 + 17*b6*b57 + 18*b6*b60 + 19*b6*b63 + 20*b6* b66 + 21*b6*b69 + 22*b6*b72 + 23*b6*b75 + 24*b6*b78 + 25*b6*b81 + 26*b6* b84 + 27*b6*b87 + 28*b6*b90 + b7*b10 + 2*b7*b13 + 3*b7*b16 + 4*b7*b19 + 5 *b7*b22 + 6*b7*b25 + 7*b7*b28 + 8*b7*b31 + 9*b7*b34 + 10*b7*b37 + 11*b7* b40 + 12*b7*b43 + 13*b7*b46 + 14*b7*b49 + 15*b7*b52 + 16*b7*b55 + 17*b7* b58 + 18*b7*b61 + 19*b7*b64 + 20*b7*b67 + 21*b7*b70 + 22*b7*b73 + 23*b7* b76 + 24*b7*b79 + 25*b7*b82 + 26*b7*b85 + 27*b7*b88 + b8*b11 + 2*b8*b14 + 3*b8*b17 + 4*b8*b20 + 5*b8*b23 + 6*b8*b26 + 7*b8*b29 + 8*b8*b32 + 9*b8 *b35 + 10*b8*b38 + 11*b8*b41 + 12*b8*b44 + 13*b8*b47 + 14*b8*b50 + 15*b8* b53 + 16*b8*b56 + 17*b8*b59 + 18*b8*b62 + 19*b8*b65 + 20*b8*b68 + 21*b8* b71 + 22*b8*b74 + 23*b8*b77 + 24*b8*b80 + 25*b8*b83 + 26*b8*b86 + 27*b8* b89 + b9*b12 + 2*b9*b15 + 3*b9*b18 + 4*b9*b21 + 5*b9*b24 + 6*b9*b27 + 7* b9*b30 + 8*b9*b33 + 9*b9*b36 + 10*b9*b39 + 11*b9*b42 + 12*b9*b45 + 13*b9* b48 + 14*b9*b51 + 15*b9*b54 + 16*b9*b57 + 17*b9*b60 + 18*b9*b63 + 19*b9* b66 + 20*b9*b69 + 21*b9*b72 + 22*b9*b75 + 23*b9*b78 + 24*b9*b81 + 25*b9* b84 + 26*b9*b87 + 27*b9*b90 + b10*b13 + 2*b10*b16 + 3*b10*b19 + 4*b10*b22 + 5*b10*b25 + 6*b10*b28 + 7*b10*b31 + 8*b10*b34 + 9*b10*b37 + 10*b10*b40 + 11*b10*b43 + 12*b10*b46 + 13*b10*b49 + 14*b10*b52 + 15*b10*b55 + 16* b10*b58 + 17*b10*b61 + 18*b10*b64 + 19*b10*b67 + 20*b10*b70 + 21*b10*b73 + 22*b10*b76 + 23*b10*b79 + 24*b10*b82 + 25*b10*b85 + 26*b10*b88 + b11* b14 + 2*b11*b17 + 3*b11*b20 + 4*b11*b23 + 5*b11*b26 + 6*b11*b29 + 7*b11* b32 + 8*b11*b35 + 9*b11*b38 + 10*b11*b41 + 11*b11*b44 + 12*b11*b47 + 13* b11*b50 + 14*b11*b53 + 15*b11*b56 + 16*b11*b59 + 17*b11*b62 + 18*b11*b65 + 19*b11*b68 + 20*b11*b71 + 21*b11*b74 + 22*b11*b77 + 23*b11*b80 + 24* b11*b83 + 25*b11*b86 + 26*b11*b89 + b12*b15 + 2*b12*b18 + 3*b12*b21 + 4* b12*b24 + 5*b12*b27 + 6*b12*b30 + 7*b12*b33 + 8*b12*b36 + 9*b12*b39 + 10* b12*b42 + 11*b12*b45 + 12*b12*b48 + 13*b12*b51 + 14*b12*b54 + 15*b12*b57 + 16*b12*b60 + 17*b12*b63 + 18*b12*b66 + 19*b12*b69 + 20*b12*b72 + 21* b12*b75 + 22*b12*b78 + 23*b12*b81 + 24*b12*b84 + 25*b12*b87 + 26*b12*b90 + b13*b16 + 2*b13*b19 + 3*b13*b22 + 4*b13*b25 + 5*b13*b28 + 6*b13*b31 + 7*b13*b34 + 8*b13*b37 + 9*b13*b40 + 10*b13*b43 + 11*b13*b46 + 12*b13*b49 + 13*b13*b52 + 14*b13*b55 + 15*b13*b58 + 16*b13*b61 + 17*b13*b64 + 18* b13*b67 + 19*b13*b70 + 20*b13*b73 + 21*b13*b76 + 22*b13*b79 + 23*b13*b82 + 24*b13*b85 + 25*b13*b88 + b14*b17 + 2*b14*b20 + 3*b14*b23 + 4*b14*b26 + 5*b14*b29 + 6*b14*b32 + 7*b14*b35 + 8*b14*b38 + 9*b14*b41 + 10*b14*b44 + 11*b14*b47 + 12*b14*b50 + 13*b14*b53 + 14*b14*b56 + 15*b14*b59 + 16* b14*b62 + 17*b14*b65 + 18*b14*b68 + 19*b14*b71 + 20*b14*b74 + 21*b14*b77 + 22*b14*b80 + 23*b14*b83 + 24*b14*b86 + 25*b14*b89 + b15*b18 + 2*b15* b21 + 3*b15*b24 + 4*b15*b27 + 5*b15*b30 + 6*b15*b33 + 7*b15*b36 + 8*b15* b39 + 9*b15*b42 + 10*b15*b45 + 11*b15*b48 + 12*b15*b51 + 13*b15*b54 + 14* b15*b57 + 15*b15*b60 + 16*b15*b63 + 17*b15*b66 + 18*b15*b69 + 19*b15*b72 + 20*b15*b75 + 21*b15*b78 + 22*b15*b81 + 23*b15*b84 + 24*b15*b87 + 25* b15*b90 + b16*b19 + 2*b16*b22 + 3*b16*b25 + 4*b16*b28 + 5*b16*b31 + 6*b16 *b34 + 7*b16*b37 + 8*b16*b40 + 9*b16*b43 + 10*b16*b46 + 11*b16*b49 + 12* b16*b52 + 13*b16*b55 + 14*b16*b58 + 15*b16*b61 + 16*b16*b64 + 17*b16*b67 + 18*b16*b70 + 19*b16*b73 + 20*b16*b76 + 21*b16*b79 + 22*b16*b82 + 23* b16*b85 + 24*b16*b88 + b17*b20 + 2*b17*b23 + 3*b17*b26 + 4*b17*b29 + 5* b17*b32 + 6*b17*b35 + 7*b17*b38 + 8*b17*b41 + 9*b17*b44 + 10*b17*b47 + 11 *b17*b50 + 12*b17*b53 + 13*b17*b56 + 14*b17*b59 + 15*b17*b62 + 16*b17*b65 + 17*b17*b68 + 18*b17*b71 + 19*b17*b74 + 20*b17*b77 + 21*b17*b80 + 22* b17*b83 + 23*b17*b86 + 24*b17*b89 + b18*b21 + 2*b18*b24 + 3*b18*b27 + 4* b18*b30 + 5*b18*b33 + 6*b18*b36 + 7*b18*b39 + 8*b18*b42 + 9*b18*b45 + 10* b18*b48 + 11*b18*b51 + 12*b18*b54 + 13*b18*b57 + 14*b18*b60 + 15*b18*b63 + 16*b18*b66 + 17*b18*b69 + 18*b18*b72 + 19*b18*b75 + 20*b18*b78 + 21* b18*b81 + 22*b18*b84 + 23*b18*b87 + 24*b18*b90 + b19*b22 + 2*b19*b25 + 3* b19*b28 + 4*b19*b31 + 5*b19*b34 + 6*b19*b37 + 7*b19*b40 + 8*b19*b43 + 9* b19*b46 + 10*b19*b49 + 11*b19*b52 + 12*b19*b55 + 13*b19*b58 + 14*b19*b61 + 15*b19*b64 + 16*b19*b67 + 17*b19*b70 + 18*b19*b73 + 19*b19*b76 + 20* b19*b79 + 21*b19*b82 + 22*b19*b85 + 23*b19*b88 + b20*b23 + 2*b20*b26 + 3* b20*b29 + 4*b20*b32 + 5*b20*b35 + 6*b20*b38 + 7*b20*b41 + 8*b20*b44 + 9* b20*b47 + 10*b20*b50 + 11*b20*b53 + 12*b20*b56 + 13*b20*b59 + 14*b20*b62 + 15*b20*b65 + 16*b20*b68 + 17*b20*b71 + 18*b20*b74 + 19*b20*b77 + 20* b20*b80 + 21*b20*b83 + 22*b20*b86 + 23*b20*b89 + b21*b24 + 2*b21*b27 + 3* b21*b30 + 4*b21*b33 + 5*b21*b36 + 6*b21*b39 + 7*b21*b42 + 8*b21*b45 + 9* b21*b48 + 10*b21*b51 + 11*b21*b54 + 12*b21*b57 + 13*b21*b60 + 14*b21*b63 + 15*b21*b66 + 16*b21*b69 + 17*b21*b72 + 18*b21*b75 + 19*b21*b78 + 20* b21*b81 + 21*b21*b84 + 22*b21*b87 + 23*b21*b90 + b22*b25 + 2*b22*b28 + 3* b22*b31 + 4*b22*b34 + 5*b22*b37 + 6*b22*b40 + 7*b22*b43 + 8*b22*b46 + 9* b22*b49 + 10*b22*b52 + 11*b22*b55 + 12*b22*b58 + 13*b22*b61 + 14*b22*b64 + 15*b22*b67 + 16*b22*b70 + 17*b22*b73 + 18*b22*b76 + 19*b22*b79 + 20* b22*b82 + 21*b22*b85 + 22*b22*b88 + b23*b26 + 2*b23*b29 + 3*b23*b32 + 4* b23*b35 + 5*b23*b38 + 6*b23*b41 + 7*b23*b44 + 8*b23*b47 + 9*b23*b50 + 10* b23*b53 + 11*b23*b56 + 12*b23*b59 + 13*b23*b62 + 14*b23*b65 + 15*b23*b68 + 16*b23*b71 + 17*b23*b74 + 18*b23*b77 + 19*b23*b80 + 20*b23*b83 + 21* b23*b86 + 22*b23*b89 + b24*b27 + 2*b24*b30 + 3*b24*b33 + 4*b24*b36 + 5* b24*b39 + 6*b24*b42 + 7*b24*b45 + 8*b24*b48 + 9*b24*b51 + 10*b24*b54 + 11 *b24*b57 + 12*b24*b60 + 13*b24*b63 + 14*b24*b66 + 15*b24*b69 + 16*b24*b72 + 17*b24*b75 + 18*b24*b78 + 19*b24*b81 + 20*b24*b84 + 21*b24*b87 + 22* b24*b90 + b25*b28 + 2*b25*b31 + 3*b25*b34 + 4*b25*b37 + 5*b25*b40 + 6*b25 *b43 + 7*b25*b46 + 8*b25*b49 + 9*b25*b52 + 10*b25*b55 + 11*b25*b58 + 12* b25*b61 + 13*b25*b64 + 14*b25*b67 + 15*b25*b70 + 16*b25*b73 + 17*b25*b76 + 18*b25*b79 + 19*b25*b82 + 20*b25*b85 + 21*b25*b88 + b26*b29 + 2*b26* b32 + 3*b26*b35 + 4*b26*b38 + 5*b26*b41 + 6*b26*b44 + 7*b26*b47 + 8*b26* b50 + 9*b26*b53 + 10*b26*b56 + 11*b26*b59 + 12*b26*b62 + 13*b26*b65 + 14* b26*b68 + 15*b26*b71 + 16*b26*b74 + 17*b26*b77 + 18*b26*b80 + 19*b26*b83 + 20*b26*b86 + 21*b26*b89 + b27*b30 + 2*b27*b33 + 3*b27*b36 + 4*b27*b39 + 5*b27*b42 + 6*b27*b45 + 7*b27*b48 + 8*b27*b51 + 9*b27*b54 + 10*b27*b57 + 11*b27*b60 + 12*b27*b63 + 13*b27*b66 + 14*b27*b69 + 15*b27*b72 + 16* b27*b75 + 17*b27*b78 + 18*b27*b81 + 19*b27*b84 + 20*b27*b87 + 21*b27*b90 + b28*b31 + 2*b28*b34 + 3*b28*b37 + 4*b28*b40 + 5*b28*b43 + 6*b28*b46 + 7*b28*b49 + 8*b28*b52 + 9*b28*b55 + 10*b28*b58 + 11*b28*b61 + 12*b28*b64 + 13*b28*b67 + 14*b28*b70 + 15*b28*b73 + 16*b28*b76 + 17*b28*b79 + 18* b28*b82 + 19*b28*b85 + 20*b28*b88 + b29*b32 + 2*b29*b35 + 3*b29*b38 + 4* b29*b41 + 5*b29*b44 + 6*b29*b47 + 7*b29*b50 + 8*b29*b53 + 9*b29*b56 + 10* b29*b59 + 11*b29*b62 + 12*b29*b65 + 13*b29*b68 + 14*b29*b71 + 15*b29*b74 + 16*b29*b77 + 17*b29*b80 + 18*b29*b83 + 19*b29*b86 + 20*b29*b89 + b30* b33 + 2*b30*b36 + 3*b30*b39 + 4*b30*b42 + 5*b30*b45 + 6*b30*b48 + 7*b30* b51 + 8*b30*b54 + 9*b30*b57 + 10*b30*b60 + 11*b30*b63 + 12*b30*b66 + 13* b30*b69 + 14*b30*b72 + 15*b30*b75 + 16*b30*b78 + 17*b30*b81 + 18*b30*b84 + 19*b30*b87 + 20*b30*b90 + b31*b34 + 2*b31*b37 + 3*b31*b40 + 4*b31*b43 + 5*b31*b46 + 6*b31*b49 + 7*b31*b52 + 8*b31*b55 + 9*b31*b58 + 10*b31*b61 + 11*b31*b64 + 12*b31*b67 + 13*b31*b70 + 14*b31*b73 + 15*b31*b76 + 16* b31*b79 + 17*b31*b82 + 18*b31*b85 + 19*b31*b88 + b32*b35 + 2*b32*b38 + 3* b32*b41 + 4*b32*b44 + 5*b32*b47 + 6*b32*b50 + 7*b32*b53 + 8*b32*b56 + 9* b32*b59 + 10*b32*b62 + 11*b32*b65 + 12*b32*b68 + 13*b32*b71 + 14*b32*b74 + 15*b32*b77 + 16*b32*b80 + 17*b32*b83 + 18*b32*b86 + 19*b32*b89 + b33* b36 + 2*b33*b39 + 3*b33*b42 + 4*b33*b45 + 5*b33*b48 + 6*b33*b51 + 7*b33* b54 + 8*b33*b57 + 9*b33*b60 + 10*b33*b63 + 11*b33*b66 + 12*b33*b69 + 13* b33*b72 + 14*b33*b75 + 15*b33*b78 + 16*b33*b81 + 17*b33*b84 + 18*b33*b87 + 19*b33*b90 + b34*b37 + 2*b34*b40 + 3*b34*b43 + 4*b34*b46 + 5*b34*b49 + 6*b34*b52 + 7*b34*b55 + 8*b34*b58 + 9*b34*b61 + 10*b34*b64 + 11*b34* b67 + 12*b34*b70 + 13*b34*b73 + 14*b34*b76 + 15*b34*b79 + 16*b34*b82 + 17 *b34*b85 + 18*b34*b88 + b35*b38 + 2*b35*b41 + 3*b35*b44 + 4*b35*b47 + 5* b35*b50 + 6*b35*b53 + 7*b35*b56 + 8*b35*b59 + 9*b35*b62 + 10*b35*b65 + 11 *b35*b68 + 12*b35*b71 + 13*b35*b74 + 14*b35*b77 + 15*b35*b80 + 16*b35*b83 + 17*b35*b86 + 18*b35*b89 + b36*b39 + 2*b36*b42 + 3*b36*b45 + 4*b36*b48 + 5*b36*b51 + 6*b36*b54 + 7*b36*b57 + 8*b36*b60 + 9*b36*b63 + 10*b36*b66 + 11*b36*b69 + 12*b36*b72 + 13*b36*b75 + 14*b36*b78 + 15*b36*b81 + 16* b36*b84 + 17*b36*b87 + 18*b36*b90 + b37*b40 + 2*b37*b43 + 3*b37*b46 + 4* b37*b49 + 5*b37*b52 + 6*b37*b55 + 7*b37*b58 + 8*b37*b61 + 9*b37*b64 + 10* b37*b67 + 11*b37*b70 + 12*b37*b73 + 13*b37*b76 + 14*b37*b79 + 15*b37*b82 + 16*b37*b85 + 17*b37*b88 + b38*b41 + 2*b38*b44 + 3*b38*b47 + 4*b38*b50 + 5*b38*b53 + 6*b38*b56 + 7*b38*b59 + 8*b38*b62 + 9*b38*b65 + 10*b38*b68 + 11*b38*b71 + 12*b38*b74 + 13*b38*b77 + 14*b38*b80 + 15*b38*b83 + 16* b38*b86 + 17*b38*b89 + b39*b42 + 2*b39*b45 + 3*b39*b48 + 4*b39*b51 + 5* b39*b54 + 6*b39*b57 + 7*b39*b60 + 8*b39*b63 + 9*b39*b66 + 10*b39*b69 + 11 *b39*b72 + 12*b39*b75 + 13*b39*b78 + 14*b39*b81 + 15*b39*b84 + 16*b39*b87 + 17*b39*b90 + b40*b43 + 2*b40*b46 + 3*b40*b49 + 4*b40*b52 + 5*b40*b55 + 6*b40*b58 + 7*b40*b61 + 8*b40*b64 + 9*b40*b67 + 10*b40*b70 + 11*b40* b73 + 12*b40*b76 + 13*b40*b79 + 14*b40*b82 + 15*b40*b85 + 16*b40*b88 + b41*b44 + 2*b41*b47 + 3*b41*b50 + 4*b41*b53 + 5*b41*b56 + 6*b41*b59 + 7* b41*b62 + 8*b41*b65 + 9*b41*b68 + 10*b41*b71 + 11*b41*b74 + 12*b41*b77 + 13*b41*b80 + 14*b41*b83 + 15*b41*b86 + 16*b41*b89 + b42*b45 + 2*b42*b48 + 3*b42*b51 + 4*b42*b54 + 5*b42*b57 + 6*b42*b60 + 7*b42*b63 + 8*b42*b66 + 9*b42*b69 + 10*b42*b72 + 11*b42*b75 + 12*b42*b78 + 13*b42*b81 + 14*b42 *b84 + 15*b42*b87 + 16*b42*b90 + b43*b46 + 2*b43*b49 + 3*b43*b52 + 4*b43* b55 + 5*b43*b58 + 6*b43*b61 + 7*b43*b64 + 8*b43*b67 + 9*b43*b70 + 10*b43* b73 + 11*b43*b76 + 12*b43*b79 + 13*b43*b82 + 14*b43*b85 + 15*b43*b88 + b44*b47 + 2*b44*b50 + 3*b44*b53 + 4*b44*b56 + 5*b44*b59 + 6*b44*b62 + 7* b44*b65 + 8*b44*b68 + 9*b44*b71 + 10*b44*b74 + 11*b44*b77 + 12*b44*b80 + 13*b44*b83 + 14*b44*b86 + 15*b44*b89 + b45*b48 + 2*b45*b51 + 3*b45*b54 + 4*b45*b57 + 5*b45*b60 + 6*b45*b63 + 7*b45*b66 + 8*b45*b69 + 9*b45*b72 + 10*b45*b75 + 11*b45*b78 + 12*b45*b81 + 13*b45*b84 + 14*b45*b87 + 15*b45* b90 + b46*b49 + 2*b46*b52 + 3*b46*b55 + 4*b46*b58 + 5*b46*b61 + 6*b46*b64 + 7*b46*b67 + 8*b46*b70 + 9*b46*b73 + 10*b46*b76 + 11*b46*b79 + 12*b46* b82 + 13*b46*b85 + 14*b46*b88 + b47*b50 + 2*b47*b53 + 3*b47*b56 + 4*b47* b59 + 5*b47*b62 + 6*b47*b65 + 7*b47*b68 + 8*b47*b71 + 9*b47*b74 + 10*b47* b77 + 11*b47*b80 + 12*b47*b83 + 13*b47*b86 + 14*b47*b89 + b48*b51 + 2*b48 *b54 + 3*b48*b57 + 4*b48*b60 + 5*b48*b63 + 6*b48*b66 + 7*b48*b69 + 8*b48* b72 + 9*b48*b75 + 10*b48*b78 + 11*b48*b81 + 12*b48*b84 + 13*b48*b87 + 14* b48*b90 + b49*b52 + 2*b49*b55 + 3*b49*b58 + 4*b49*b61 + 5*b49*b64 + 6*b49 *b67 + 7*b49*b70 + 8*b49*b73 + 9*b49*b76 + 10*b49*b79 + 11*b49*b82 + 12* b49*b85 + 13*b49*b88 + b50*b53 + 2*b50*b56 + 3*b50*b59 + 4*b50*b62 + 5* b50*b65 + 6*b50*b68 + 7*b50*b71 + 8*b50*b74 + 9*b50*b77 + 10*b50*b80 + 11 *b50*b83 + 12*b50*b86 + 13*b50*b89 + b51*b54 + 2*b51*b57 + 3*b51*b60 + 4* b51*b63 + 5*b51*b66 + 6*b51*b69 + 7*b51*b72 + 8*b51*b75 + 9*b51*b78 + 10* b51*b81 + 11*b51*b84 + 12*b51*b87 + 13*b51*b90 + b52*b55 + 2*b52*b58 + 3* b52*b61 + 4*b52*b64 + 5*b52*b67 + 6*b52*b70 + 7*b52*b73 + 8*b52*b76 + 9* b52*b79 + 10*b52*b82 + 11*b52*b85 + 12*b52*b88 + b53*b56 + 2*b53*b59 + 3* b53*b62 + 4*b53*b65 + 5*b53*b68 + 6*b53*b71 + 7*b53*b74 + 8*b53*b77 + 9* b53*b80 + 10*b53*b83 + 11*b53*b86 + 12*b53*b89 + b54*b57 + 2*b54*b60 + 3* b54*b63 + 4*b54*b66 + 5*b54*b69 + 6*b54*b72 + 7*b54*b75 + 8*b54*b78 + 9* b54*b81 + 10*b54*b84 + 11*b54*b87 + 12*b54*b90 + b55*b58 + 2*b55*b61 + 3* b55*b64 + 4*b55*b67 + 5*b55*b70 + 6*b55*b73 + 7*b55*b76 + 8*b55*b79 + 9* b55*b82 + 10*b55*b85 + 11*b55*b88 + b56*b59 + 2*b56*b62 + 3*b56*b65 + 4* b56*b68 + 5*b56*b71 + 6*b56*b74 + 7*b56*b77 + 8*b56*b80 + 9*b56*b83 + 10* b56*b86 + 11*b56*b89 + b57*b60 + 2*b57*b63 + 3*b57*b66 + 4*b57*b69 + 5* b57*b72 + 6*b57*b75 + 7*b57*b78 + 8*b57*b81 + 9*b57*b84 + 10*b57*b87 + 11 *b57*b90 + b58*b61 + 2*b58*b64 + 3*b58*b67 + 4*b58*b70 + 5*b58*b73 + 6* b58*b76 + 7*b58*b79 + 8*b58*b82 + 9*b58*b85 + 10*b58*b88 + b59*b62 + 2* b59*b65 + 3*b59*b68 + 4*b59*b71 + 5*b59*b74 + 6*b59*b77 + 7*b59*b80 + 8* b59*b83 + 9*b59*b86 + 10*b59*b89 + b60*b63 + 2*b60*b66 + 3*b60*b69 + 4* b60*b72 + 5*b60*b75 + 6*b60*b78 + 7*b60*b81 + 8*b60*b84 + 9*b60*b87 + 10* b60*b90 + b61*b64 + 2*b61*b67 + 3*b61*b70 + 4*b61*b73 + 5*b61*b76 + 6*b61 *b79 + 7*b61*b82 + 8*b61*b85 + 9*b61*b88 + b62*b65 + 2*b62*b68 + 3*b62* b71 + 4*b62*b74 + 5*b62*b77 + 6*b62*b80 + 7*b62*b83 + 8*b62*b86 + 9*b62* b89 + b63*b66 + 2*b63*b69 + 3*b63*b72 + 4*b63*b75 + 5*b63*b78 + 6*b63*b81 + 7*b63*b84 + 8*b63*b87 + 9*b63*b90 + b64*b67 + 2*b64*b70 + 3*b64*b73 + 4*b64*b76 + 5*b64*b79 + 6*b64*b82 + 7*b64*b85 + 8*b64*b88 + b65*b68 + 2* b65*b71 + 3*b65*b74 + 4*b65*b77 + 5*b65*b80 + 6*b65*b83 + 7*b65*b86 + 8* b65*b89 + b66*b69 + 2*b66*b72 + 3*b66*b75 + 4*b66*b78 + 5*b66*b81 + 6*b66 *b84 + 7*b66*b87 + 8*b66*b90 + b67*b70 + 2*b67*b73 + 3*b67*b76 + 4*b67* b79 + 5*b67*b82 + 6*b67*b85 + 7*b67*b88 + b68*b71 + 2*b68*b74 + 3*b68*b77 + 4*b68*b80 + 5*b68*b83 + 6*b68*b86 + 7*b68*b89 + b69*b72 + 2*b69*b75 + 3*b69*b78 + 4*b69*b81 + 5*b69*b84 + 6*b69*b87 + 7*b69*b90 + b70*b73 + 2* b70*b76 + 3*b70*b79 + 4*b70*b82 + 5*b70*b85 + 6*b70*b88 + b71*b74 + 2*b71 *b77 + 3*b71*b80 + 4*b71*b83 + 5*b71*b86 + 6*b71*b89 + b72*b75 + 2*b72* b78 + 3*b72*b81 + 4*b72*b84 + 5*b72*b87 + 6*b72*b90 + b73*b76 + 2*b73*b79 + 3*b73*b82 + 4*b73*b85 + 5*b73*b88 + b74*b77 + 2*b74*b80 + 3*b74*b83 + 4*b74*b86 + 5*b74*b89 + b75*b78 + 2*b75*b81 + 3*b75*b84 + 4*b75*b87 + 5* b75*b90 + b76*b79 + 2*b76*b82 + 3*b76*b85 + 4*b76*b88 + b77*b80 + 2*b77* b83 + 3*b77*b86 + 4*b77*b89 + b78*b81 + 2*b78*b84 + 3*b78*b87 + 4*b78*b90 + b79*b82 + 2*b79*b85 + 3*b79*b88 + b80*b83 + 2*b80*b86 + 3*b80*b89 + b81*b84 + 2*b81*b87 + 3*b81*b90 + b82*b85 + 2*b82*b88 + b83*b86 + 2*b83* b89 + b84*b87 + 2*b84*b90 + b85*b88 + b86*b89 + b87*b90 - objvar =E= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91