MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance gsg_0001
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 2335.69947600 (ANTIGONE) 2378.16050800 (BARON) 2378.16046000 (COUENNE) 2378.16051200 (LINDO) 2378.16049100 (SCIP) 0.00000000 (SHOT) |
Sourceⓘ | GAMS Software GmbH Client Model |
Added to libraryⓘ | 11 Dec 2003 |
Problem typeⓘ | NLP |
#Variablesⓘ | 78 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 44 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 112 |
#Linear Constraintsⓘ | 111 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 1 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 369 |
#Nonlinear Nonzeros in Jacobianⓘ | 44 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 66 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 22 |
#Blocks in Hessian of Lagrangianⓘ | 22 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 7.6045e-03 |
Maximal coefficientⓘ | 1.3000e+02 |
Infeasibility of initial pointⓘ | 509.4 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 112 41 41 30 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 78 78 0 0 0 0 0 0 * FX 5 * * Nonzero counts * Total const NL DLL * 369 325 44 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,objvar; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x68 ,x69,x70,x71,x72,x73,x74,x75,x76,x77; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112; e1.. x1 + x12 + x23 =G= 12.735; e2.. x2 + x13 + x24 =G= 18.523; e3.. x3 + x14 + x25 =G= 24.42; e4.. x4 + x15 + x26 =G= 30.729; e5.. x5 + x16 + x27 =G= 41.698; e6.. x6 + x17 + x28 =G= 52.802; e7.. x7 + x18 + x29 =G= 65.155; e8.. x8 + x19 + x30 =G= 81.675; e9.. x9 + x20 + x31 =G= 98.667; e10.. x10 + x21 + x32 =G= 115.501; e11.. x11 + x22 + x33 =G= 133.561; e12.. - 0.744093914896725*x1 + x2 =G= 0; e13.. - 0.744093914896725*x2 + x3 =G= 0; e14.. - 0.744093914896725*x3 + x4 =G= 0; e15.. - 0.744093914896725*x4 + x5 =G= 0; e16.. - 0.744093914896725*x5 + x6 =G= 0; e17.. - 0.744093914896725*x6 + x7 =G= 0; e18.. - 0.744093914896725*x7 + x8 =G= 0; e19.. - 0.744093914896725*x8 + x9 =G= 0; e20.. - 0.744093914896725*x9 + x10 =G= 0; e21.. - 0.744093914896725*x10 + x11 =G= 0; e22.. - 0.744093914896725*x12 + x13 =G= 0; e23.. - 0.744093914896725*x13 + x14 =G= 0; e24.. - 0.744093914896725*x14 + x15 =G= 0; e25.. - 0.744093914896725*x15 + x16 =G= 0; e26.. - 0.744093914896725*x16 + x17 =G= 0; e27.. - 0.744093914896725*x17 + x18 =G= 0; e28.. - 0.744093914896725*x18 + x19 =G= 0; e29.. - 0.744093914896725*x19 + x20 =G= 0; e30.. - 0.744093914896725*x20 + x21 =G= 0; e31.. - 0.744093914896725*x21 + x22 =G= 0; e32.. - 0.744093914896725*x23 + x24 =G= 0; e33.. - 0.744093914896725*x24 + x25 =G= 0; e34.. - 0.744093914896725*x25 + x26 =G= 0; e35.. - 0.744093914896725*x26 + x27 =G= 0; e36.. - 0.744093914896725*x27 + x28 =G= 0; e37.. - 0.744093914896725*x28 + x29 =G= 0; e38.. - 0.744093914896725*x29 + x30 =G= 0; e39.. - 0.744093914896725*x30 + x31 =G= 0; e40.. - 0.744093914896725*x31 + x32 =G= 0; e41.. - 0.744093914896725*x32 + x33 =G= 0; e42.. - 4*x1 + x2 =L= 0.18523; e43.. - 4*x2 + x3 =L= 0.2442; e44.. - 4*x3 + x4 =L= 0.30729; e45.. - 4*x4 + x5 =L= 0.41698; e46.. - 4*x5 + x6 =L= 0.52802; e47.. - 4*x6 + x7 =L= 0.65155; e48.. - 4*x7 + x8 =L= 0.81675; e49.. - 4*x8 + x9 =L= 0.98667; e50.. - 4*x9 + x10 =L= 1.15501; e51.. - 4*x10 + x11 =L= 1.33561; e52.. - 4*x12 + x13 =L= 0.18523; e53.. - 4*x13 + x14 =L= 0.2442; e54.. - 4*x14 + x15 =L= 0.30729; e55.. - 4*x15 + x16 =L= 0.41698; e56.. - 4*x16 + x17 =L= 0.52802; e57.. - 4*x17 + x18 =L= 0.65155; e58.. - 4*x18 + x19 =L= 0.81675; e59.. - 4*x19 + x20 =L= 0.98667; e60.. - 4*x20 + x21 =L= 1.15501; e61.. - 4*x21 + x22 =L= 1.33561; e62.. - 4*x23 + x24 =L= 0.18523; e63.. - 4*x24 + x25 =L= 0.2442; e64.. - 4*x25 + x26 =L= 0.30729; e65.. - 4*x26 + x27 =L= 0.41698; e66.. - 4*x27 + x28 =L= 0.52802; e67.. - 4*x28 + x29 =L= 0.65155; e68.. - 4*x29 + x30 =L= 0.81675; e69.. - 4*x30 + x31 =L= 0.98667; e70.. - 4*x31 + x32 =L= 1.15501; e71.. - 4*x32 + x33 =L= 1.33561; e72.. - 5*x1 - 5*x2 - x34 + x35 =E= 0; e73.. - 5*x2 - 5*x3 - x35 + x36 =E= 0; e74.. - 5*x3 - 5*x4 - x36 + x37 =E= 0; e75.. - 5*x4 - 5*x5 - x37 + x38 =E= 0; e76.. - 5*x5 - 5*x6 - x38 + x39 =E= 0; e77.. - 5*x6 - 5*x7 - x39 + x40 =E= 0; e78.. - 5*x7 - 5*x8 - x40 + x41 =E= 0; e79.. - 5*x8 - 5*x9 - x41 + x42 =E= 0; e80.. - 5*x9 - 5*x10 - x42 + x43 =E= 0; e81.. - 5*x10 - 5*x11 - x43 + x44 =E= 0; e82.. - 5*x12 - 5*x13 - x45 + x46 =E= 0; e83.. - 5*x13 - 5*x14 - x46 + x47 =E= 0; e84.. - 5*x14 - 5*x15 - x47 + x48 =E= 0; e85.. - 5*x15 - 5*x16 - x48 + x49 =E= 0; e86.. - 5*x16 - 5*x17 - x49 + x50 =E= 0; e87.. - 5*x17 - 5*x18 - x50 + x51 =E= 0; e88.. - 5*x18 - 5*x19 - x51 + x52 =E= 0; e89.. - 5*x19 - 5*x20 - x52 + x53 =E= 0; e90.. - 5*x20 - 5*x21 - x53 + x54 =E= 0; e91.. - 5*x21 - 5*x22 - x54 + x55 =E= 0; e92.. - 5*x23 - 5*x24 - x56 + x57 =E= 0; e93.. - 5*x24 - 5*x25 - x57 + x58 =E= 0; e94.. - 5*x25 - 5*x26 - x58 + x59 =E= 0; e95.. - 5*x26 - 5*x27 - x59 + x60 =E= 0; e96.. - 5*x27 - 5*x28 - x60 + x61 =E= 0; e97.. - 5*x28 - 5*x29 - x61 + x62 =E= 0; e98.. - 5*x29 - 5*x30 - x62 + x63 =E= 0; e99.. - 5*x30 - 5*x31 - x63 + x64 =E= 0; e100.. - 5*x31 - 5*x32 - x64 + x65 =E= 0; e101.. - 5*x32 - 5*x33 - x65 + x66 =E= 0; e102.. - 0.850412249705536*x1 - 0.850412249705536*x2 - x67 + x68 =E= 0; e103.. - 0.850412249705536*x2 - 0.850412249705536*x3 - x68 + x69 =E= 0; e104.. - 0.850412249705536*x3 - 0.850412249705536*x4 - x69 + x70 =E= 0; e105.. - 0.850412249705536*x4 - 0.850412249705536*x5 - x70 + x71 =E= 0; e106.. - 0.850412249705536*x5 - 0.850412249705536*x6 - x71 + x72 =E= 0; e107.. - 0.850412249705536*x6 - 0.850412249705536*x7 - x72 + x73 =E= 0; e108.. - 0.850412249705536*x7 - 0.850412249705536*x8 - x73 + x74 =E= 0; e109.. - 0.850412249705536*x8 - 0.850412249705536*x9 - x74 + x75 =E= 0; e110.. - 0.850412249705536*x9 - 0.850412249705536*x10 - x75 + x76 =E= 0; e111.. - 0.850412249705536*x10 - 0.850412249705536*x11 - x76 + x77 =E= 0; e112.. -(15*(5*x45)**(-0.1)*x12 + 130*(100*x56)**(-0.3)*x23 + 30*x12 + 30*x23 + 0.613913253540759*(15*(5*x46)**(-0.1)*x13 + 130*(100*x57)**(-0.3)*x24 + 30*x13 + 30*x24) + 0.376889482873*(15*(5*x47)**(-0.1)*x14 + 130*(100* x58)**(-0.3)*x25 + 30*x14 + 30*x25) + 0.231377448655858*(15*(5*x48)**(- 0.1)*x15 + 130*(100*x59)**(-0.3)*x26 + 30*x15 + 30*x26) + 0.142045682300278*(15*(5*x49)**(-0.1)*x16 + 130*(100*x60)**(-0.3)*x27 + 30*x16 + 30*x27) + 0.0872037269723804*(15*(5*x50)**(-0.1)*x17 + 130*(100 *x61)**(-0.3)*x28 + 30*x17 + 30*x28) + 0.0535355237464941*(15*(5*x51)**( -0.1)*x18 + 130*(100*x62)**(-0.3)*x29 + 30*x18 + 30*x29) + 0.0328661675632188*(15*(5*x52)**(-0.1)*x19 + 130*(100*x63)**(-0.3)*x30 + 30*x19 + 30*x30) + 0.0201769758601514*(15*(5*x53)**(-0.1)*x20 + 130*( 100*x64)**(-0.3)*x31 + 30*x20 + 30*x31) + 0.0123869128969189*(15*(5*x54) **(-0.1)*x21 + 130*(100*x65)**(-0.3)*x32 + 30*x21 + 30*x32) + 0.00760448999787347*(15*(5*x55)**(-0.1)*x22 + 130*(100*x66)**(-0.3)*x33 + 30*x22 + 30*x33)) - 40*x1 - 24.5565301416304*x2 - 15.07557931492*x3 - 9.25509794623431*x4 - 5.6818272920111*x5 - 3.48814907889522*x6 - 2.14142094985976*x7 - 1.31464670252875*x8 - 0.807079034406055*x9 - 0.495476515876756*x10 - 0.304179599914939*x11 + objvar =E= 0; * set non-default bounds x1.fx = 12.735; x2.up = 140; x3.up = 140; x4.up = 140; x5.up = 140; x6.up = 140; x7.up = 140; x8.up = 140; x9.up = 140; x10.up = 140; x11.up = 140; x12.up = 140; x13.up = 140; x14.up = 140; x15.up = 140; x16.up = 140; x17.up = 140; x18.up = 140; x19.up = 140; x20.up = 140; x21.up = 140; x22.up = 140; x23.up = 140; x24.up = 140; x25.up = 140; x26.up = 140; x27.up = 140; x28.up = 140; x29.up = 140; x30.up = 140; x31.up = 140; x32.up = 140; x33.up = 140; x34.fx = 0.1; x35.lo = 0.1; x35.up = 10000; x36.lo = 0.1; x36.up = 10000; x37.lo = 0.1; x37.up = 10000; x38.lo = 0.1; x38.up = 10000; x39.lo = 0.1; x39.up = 10000; x40.lo = 0.1; x40.up = 10000; x41.lo = 0.1; x41.up = 10000; x42.lo = 0.1; x42.up = 10000; x43.lo = 0.1; x43.up = 10000; x44.lo = 0.1; x44.up = 10000; x45.fx = 0.2; x46.lo = 0.2; x46.up = 10000; x47.lo = 0.2; x47.up = 10000; x48.lo = 0.2; x48.up = 10000; x49.lo = 0.2; x49.up = 10000; x50.lo = 0.2; x50.up = 10000; x51.lo = 0.2; x51.up = 10000; x52.lo = 0.2; x52.up = 10000; x53.lo = 0.2; x53.up = 10000; x54.lo = 0.2; x54.up = 10000; x55.lo = 0.2; x55.up = 10000; x56.fx = 0.01; x57.lo = 0.01; x57.up = 10000; x58.lo = 0.01; x58.up = 10000; x59.lo = 0.01; x59.up = 10000; x60.lo = 0.01; x60.up = 10000; x61.lo = 0.01; x61.up = 10000; x62.lo = 0.01; x62.up = 10000; x63.lo = 0.01; x63.up = 10000; x64.lo = 0.01; x64.up = 10000; x65.lo = 0.01; x65.up = 10000; x66.lo = 0.01; x66.up = 10000; x67.fx = 0; x68.up = 400; x69.up = 400; x70.up = 400; x71.up = 400; x72.up = 400; x73.up = 400; x74.up = 400; x75.up = 400; x76.up = 400; x77.up = 400; objvar.lo = 0; objvar.up = 30000; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91