MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance hadamard_4
Maximize determinant of 4 times 4 binary matrix Let a(n) be the maximal determinant of a 0/1-matrix of size n by n. Hadamard proved that a(n) ≤ 2(-n) (n+1)((n+1)/2). A Hadamard matrix attains this bound. The Hadamard conjecture states that this is the case if and only if n+1 is 1 or 2 or a multiple of 4. The values of a(n) for small n are known. See the on-line encyclopedia of integer sequences for more information.
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 3.00000000 (ANTIGONE) 3.00000001 (BARON) 3.00000000 (COUENNE) 3.00000000 (LINDO) 3.00000000 (SCIP) 3.00000000 (SHOT) |
Sourceⓘ | POLIP instance hadamard/hadamard_4 |
Applicationⓘ | Linear Algebra |
Added to libraryⓘ | 08 Dec 2018 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 17 |
#Binary Variablesⓘ | 16 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 16 |
#Nonlinear Binary Variablesⓘ | 16 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | max |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 1 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 17 |
#Nonlinear Nonzeros in Jacobianⓘ | 16 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 144 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 16 |
Maximal blocksize in Hessian of Lagrangianⓘ | 16 |
Average blocksize in Hessian of Lagrangianⓘ | 16.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 1.0000e+00 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 1 0 1 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 17 1 16 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 17 1 16 0 * * Solve m using MINLP maximizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,objvar; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16; Equations e1; e1.. b1*b6*b11*b16 - b1*b6*b12*b15 + b1*b8*b10*b15 - b4*b5*b10*b15 + b4*b5*b11* b14 - b1*b8*b11*b14 + b1*b7*b12*b14 - b1*b7*b10*b16 + b3*b5*b10*b16 - b3* b5*b12*b14 + b3*b8*b9*b14 - b4*b7*b9*b14 + b4*b7*b10*b13 - b3*b8*b10*b13 + b3*b6*b12*b13 - b3*b6*b9*b16 + b2*b7*b9*b16 - b2*b7*b12*b13 + b2*b8*b11 *b13 - b4*b6*b11*b13 + b4*b6*b9*b15 - b2*b8*b9*b15 + b2*b5*b12*b15 - b2*b5 *b11*b16 - objvar =G= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% maximizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91