MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance haverly

Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
-400.00000000 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
-600.00000000 (ANTIGONE)
-400.00000040 (BARON)
-400.00000000 (COUENNE)
-400.00000000 (GUROBI)
-400.00000000 (LINDO)
-400.00000190 (SCIP)
References Haverly, C A, Studies of the Behavior of Recursion for the Pooling Problem, ACM SIGMAP Bull, 25, 1978, 19-28.
Adhya, N, Tawarmalani, M, and Sahinidis, N V, A Lagrangian Approach to the Pooling Problem, Industrial and Engineering Chemistry Research, 38:5, 1999, 1956-1972.
Source GAMS Model Library model haverly
Application Pooling Problem
Added to library 31 Jul 2001
Problem type QCP
#Variables 12
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 3
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 2
#Nonlinear Nonzeros in Objective 0
#Constraints 9
#Linear Constraints 6
#Quadratic Constraints 3
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 31
#Nonlinear Nonzeros in Jacobian 7
#Nonzeros in (Upper-Left) Hessian of Lagrangian 4
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 3
Maximal blocksize in Hessian of Lagrangian 3
Average blocksize in Hessian of Lagrangian 3.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 5.0000e-01
Maximal coefficient 1.6000e+01
Infeasibility of initial point 2
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         10        8        0        2        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         13       13        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         34       27        7        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,objvar;

Positive Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10;


e1..    x1 - 6*x3 - 16*x4 - 10*x5 =E= 0;

e2..    x2 - 9*x6 - 15*x7 =E= 0;

e3..    x6 - x8 - x10 =E= 0;

e4..    x7 - x9 - x11 =E= 0;

e5..    x3 + x4 - x10 - x11 =E= 0;

e6..    x5 - x8 - x9 =E= 0;

e7.. x12*(x10 + x11) - 3*x3 - x4 =E= 0;

e8.. x12*x10 - 2.5*x10 - 0.5*x8 =L= 0;

e9.. x12*x11 - 1.5*x11 + 0.5*x9 =L= 0;

e10..    x1 - x2 - objvar =E= 0;

* set non-default bounds
x6.up = 100;
x7.up = 200;

* set non-default levels
x8.l = 1;
x9.l = 1;
x10.l = 1;
x11.l = 1;
x12.l = 1;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0