MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance heatexch_spec1
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 141772.03260000 (ANTIGONE) 154997.33470000 (BARON) 145407.15180000 (COUENNE) 154954.81890000 (LINDO) 154498.65490000 (SCIP) 0.00000000 (SHOT) |
Referencesⓘ | Escobar, Marcelo and Grossmann, I E, Mixed-Integer Nonlinear Programming Models for Optimal Simultaneous Synthesis of Heat Exchangers Network, 2010. |
Sourceⓘ | Specilized_Model_Case1.gms from minlp.org model 93 |
Applicationⓘ | Heat Exchanger Network |
Added to libraryⓘ | 25 Sep 2013 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 56 |
#Binary Variablesⓘ | 12 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 32 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 44 |
#Nonlinear Nonzeros in Objectiveⓘ | 32 |
#Constraintsⓘ | 64 |
#Linear Constraintsⓘ | 64 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | div mul vcpower |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 180 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 96 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 32 |
#Blocks in Hessian of Lagrangianⓘ | 11 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 5 |
Average blocksize in Hessian of Lagrangianⓘ | 2.909091 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-06 |
Maximal coefficientⓘ | 5.5000e+03 |
Infeasibility of initial pointⓘ | 9200 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 65 21 12 32 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 57 45 12 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 225 193 32 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,objvar; Positive Variables x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37,x38 ,x39,x40; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65; e1.. 10*x13 - 10*x14 - x25 - x28 =E= 0; e2.. 10*x14 - 10*x15 - x26 - x29 =E= 0; e3.. 20*x16 - 20*x17 - x31 - x34 =E= 0; e4.. 20*x17 - 20*x18 - x32 - x35 =E= 0; e5.. 15*x19 - 15*x20 - x25 - x31 =E= 0; e6.. 15*x20 - 15*x21 - x26 - x32 =E= 0; e7.. 13*x22 - 13*x23 - x28 - x34 =E= 0; e8.. 13*x23 - 13*x24 - x29 - x35 =E= 0; e9.. 10*x15 - x37 =E= 3700; e10.. 20*x18 - x38 =E= 7400; e11.. - x25 - x26 - x28 - x29 - x37 =E= -2800; e12.. - x31 - x32 - x34 - x35 - x38 =E= -4400; e13.. - 15*x19 - x39 =E= -9750; e14.. - 13*x22 - x40 =E= -6500; e15.. - x25 - x26 - x31 - x32 - x39 =E= -3600; e16.. - x28 - x29 - x34 - x35 - x40 =E= -1950; e17.. x13 - x14 =G= 0; e18.. x14 - x15 =G= 0; e19.. x16 - x17 =G= 0; e20.. x17 - x18 =G= 0; e21.. x19 - x20 =G= 0; e22.. x20 - x21 =G= 0; e23.. x22 - x23 =G= 0; e24.. x23 - x24 =G= 0; e25.. x15 =G= 370; e26.. x18 =G= 370; e27.. - x19 =G= -650; e28.. - x22 =G= -500; e29.. - x13 =E= -650; e30.. - x16 =E= -590; e31.. - x21 =E= -410; e32.. - x24 =E= -350; e33.. - 2800*b1 + x25 =L= 0; e34.. - 2800*b2 + x26 =L= 0; e35.. - 1950*b3 + x28 =L= 0; e36.. - 1950*b4 + x29 =L= 0; e37.. - 3600*b5 + x31 =L= 0; e38.. - 3600*b6 + x32 =L= 0; e39.. - 1950*b7 + x34 =L= 0; e40.. - 1950*b8 + x35 =L= 0; e41.. - 3600*b11 + x39 =L= 0; e42.. - 1950*b12 + x40 =L= 0; e43.. - 2800*b9 + x37 =L= 0; e44.. - 4400*b10 + x38 =L= 0; e45.. 280*b1 - x13 + x19 + x41 =L= 280; e46.. 280*b2 - x14 + x20 + x42 =L= 280; e47.. 130*b3 - x13 + x22 + x44 =L= 130; e48.. 130*b4 - x14 + x23 + x45 =L= 130; e49.. 280*b5 - x16 + x19 + x47 =L= 280; e50.. 280*b6 - x17 + x20 + x48 =L= 280; e51.. 130*b7 - x16 + x22 + x50 =L= 130; e52.. 130*b8 - x17 + x23 + x51 =L= 130; e53.. 280*b1 - x14 + x20 + x42 =L= 280; e54.. 280*b2 - x15 + x21 + x43 =L= 280; e55.. 130*b3 - x14 + x23 + x45 =L= 130; e56.. 130*b4 - x15 + x24 + x46 =L= 130; e57.. 280*b5 - x17 + x20 + x48 =L= 280; e58.. 280*b6 - x18 + x21 + x49 =L= 280; e59.. 130*b7 - x17 + x23 + x51 =L= 130; e60.. 130*b8 - x18 + x24 + x52 =L= 130; e61.. - x15 + x53 =L= -320; e62.. - x18 + x54 =L= -320; e63.. x19 + x55 =L= 680; e64.. x22 + x56 =L= 680; e65.. -(150*((1e-6 + 2*x25/(1e-6 + (1e-6 + 0.5*x41*x42*(x41 + x42))**0.33333)) **1 + (1e-6 + 2*x26/(1e-6 + (1e-6 + 0.5*x42*x43*(x42 + x43))**0.33333))** 1 + (1e-6 + 199.970793713208*x27)**1 + (1e-6 + 2*x28/(1e-6 + (1e-6 + 0.5* x44*x45*(x44 + x45))**0.33333))**1 + (1e-6 + 2*x29/(1e-6 + (1e-6 + 0.5* x45*x46*(x45 + x46))**0.33333))**1 + (1e-6 + 199.970793713208*x30)**1 + ( 1e-6 + 2*x31/(1e-6 + (1e-6 + 0.5*x47*x48*(x47 + x48))**0.33333))**1 + ( 1e-6 + 2*x32/(1e-6 + (1e-6 + 0.5*x48*x49*(x48 + x49))**0.33333))**1 + ( 1e-6 + 199.970793713208*x33)**1 + (1e-6 + 2*x34/(1e-6 + (1e-6 + 0.5*x50* x51*(x50 + x51))**0.33333))**1 + (1e-6 + 2*x35/(1e-6 + (1e-6 + 0.5*x51* x52*(x51 + x52))**0.33333))**1 + (1e-6 + 199.970793713208*x36)**1) + 150* (2e-6 + 1.2*x39/(1e-6 + 30*x55*(15 + 0.5*x55))**0.33333 + 1.2*x40/(1e-6 + 180*x56*(90 + 0.5*x56))**0.33333)**1 + 80*x39 + 80*x40 + 150*((1e-6 + 2*x37/(1e-6 + 35*x53*(70 + x53))**0.33333)**1 + (1e-6 + 2*x38/(1e-6 + 35* x54*(70 + x54))**0.33333)**1) + 15*x37 + 15*x38) - 5500*b1 - 5500*b2 - 5500*b3 - 5500*b4 - 5500*b5 - 5500*b6 - 5500*b7 - 5500*b8 - 5500*b9 - 5500*b10 - 5500*b11 - 5500*b12 + objvar =E= 0; * set non-default bounds x13.lo = 370; x13.up = 650; x14.lo = 370; x14.up = 650; x15.lo = 370; x15.up = 650; x16.lo = 370; x16.up = 590; x17.lo = 370; x17.up = 590; x18.lo = 370; x18.up = 590; x19.lo = 410; x19.up = 650; x20.lo = 410; x20.up = 650; x21.lo = 410; x21.up = 650; x22.lo = 350; x22.up = 500; x23.lo = 350; x23.up = 500; x24.lo = 350; x24.up = 500; x41.lo = 10; x42.lo = 10; x43.lo = 10; x44.lo = 10; x45.lo = 10; x46.lo = 10; x47.lo = 10; x48.lo = 10; x49.lo = 10; x50.lo = 10; x51.lo = 10; x52.lo = 10; x53.lo = 10; x54.lo = 10; x55.lo = 10; x56.lo = 10; * set non-default levels x13.l = 650; x14.l = 650; x15.l = 650; x16.l = 590; x17.l = 590; x18.l = 590; x25.l = 2800; x26.l = 2800; x28.l = 1950; x29.l = 1950; x31.l = 3600; x32.l = 3600; x34.l = 1950; x35.l = 1950; x41.l = 240; x42.l = 240; x43.l = 240; x44.l = 300; x45.l = 300; x46.l = 300; x47.l = 180; x48.l = 180; x49.l = 180; x50.l = 240; x51.l = 240; x52.l = 240; x53.l = 330; x54.l = 270; x55.l = 270; x56.l = 330; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91