MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance himmel11
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -30665.54004000 (ANTIGONE) -30665.53871000 (BARON) -30665.53907000 (COUENNE) -30665.53867000 (GUROBI) -30665.53868000 (LINDO) -30665.53868000 (SCIP) |
Referencesⓘ | Himmelblau, D M, Problem Number 11. In Himmelblau, D M, Applied Nonlinear Programming, Mc Graw Hill, New York, 1972. |
Sourceⓘ | GAMS Model Library model himmel11 |
Applicationⓘ | Test Problem |
Added to libraryⓘ | 18 Aug 2014 |
Problem typeⓘ | QCQP |
#Variablesⓘ | 9 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 5 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 4 |
#Nonlinear Nonzeros in Objectiveⓘ | 3 |
#Constraintsⓘ | 4 |
#Linear Constraintsⓘ | 1 |
#Quadratic Constraintsⓘ | 3 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 22 |
#Nonlinear Nonzeros in Jacobianⓘ | 13 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 15 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 1 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 5 |
Maximal blocksize in Hessian of Lagrangianⓘ | 5 |
Average blocksize in Hessian of Lagrangianⓘ | 5.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 6.2620e-04 |
Maximal coefficientⓘ | 5.0000e+03 |
Infeasibility of initial pointⓘ | 91.79 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 5 4 1 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 10 10 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 27 11 16 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,objvar; Positive Variables x1,x4; Equations e1,e2,e3,e4,e5; e1.. 5*x4 - x5 + 7*x7 - x9 =G= 0; e2.. -(0.0056858*x6*x9 + 0.0006262*x5*x8 - 0.0022053*x7*x9) + x1 + 2*x4 =E= 85.334407; e3.. -(0.0071317*x6*x9 + 0.0029955*x5*x6 + 0.0021813*sqr(x7)) + x2 =E= 80.51249 ; e4.. -(0.0047026*x7*x9 + 0.0012547*x5*x7 + 0.0019085*x7*x8) + x3 + 4*x4 =E= 9.300961; e5.. -(5.3578547*sqr(x7) + 0.8356891*x5*x9 + 37.293239*x5) - 5000*x4 + objvar =E= -40792.141; * set non-default bounds x1.up = 92; x2.lo = 90; x2.up = 110; x3.lo = 20; x3.up = 25; x5.lo = 78; x5.up = 102; x6.lo = 33; x6.up = 45; x7.lo = 27; x7.up = 45; x8.lo = 27; x8.up = 45; x9.lo = 27; x9.up = 45; * set non-default levels x5.l = 78.62; x6.l = 33.44; x7.l = 31.07; x8.l = 44.18; x9.l = 35.22; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91