MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance hmittelman

Formats ams gms mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
13.00000000 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
13.00000000 (ANTIGONE)
13.00000000 (BARON)
13.00000000 (COUENNE)
13.00000000 (LINDO)
13.00000000 (SCIP)
0.00000000 (SHOT)
Source MacMINLP model mittelman.mod
Added to library 01 May 2001
Problem type BNLP
#Variables 16
#Binary Variables 16
#Integer Variables 0
#Nonlinear Variables 16
#Nonlinear Binary Variables 16
#Nonlinear Integer Variables 0
Objective Sense min
Objective type polynomial
Objective curvature indefinite
#Nonzeros in Objective 15
#Nonlinear Nonzeros in Objective 15
#Constraints 7
#Linear Constraints 0
#Quadratic Constraints 0
#Polynomial Constraints 7
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 107
#Nonlinear Nonzeros in Jacobian 107
#Nonzeros in (Upper-Left) Hessian of Lagrangian 110
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 16
Maximal blocksize in Hessian of Lagrangian 16
Average blocksize in Hessian of Lagrangian 16.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 2.0000e+00
Maximal coefficient 1.5000e+01
Infeasibility of initial point 6.343
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          8        1        0        7        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         17        1       16        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        123        1      122        0
*
*  Solve m using MINLP minimizing objvar;


Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,objvar;

Binary Variables  b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16;

Equations  e1,e2,e3,e4,e5,e6,e7,e8;


e1.. -(10*b5*b7*b9*b10*b14*b15*b16 + 7*b1*b2*b3*b4*b8*b11 + b3*b4*b6*b7*b8 + 12
     *b3*b4*b8*b11 + 8*b6*b7*b8*b12 + 3*b6*b7*b9*b14*b16 + b9*b10*b14*b16 + 5*
     b5*b10*b14*b15*b16 + 3*b1*b2*b11*b12) + objvar =E= 0;

e2.. 3*b5*b7*b9*b10*b14*b15*b16 - 12*b1*b2*b3*b4*b8*b11 - 8*b3*b4*b6*b7*b8 + b3
     *b4*b8*b11 - 7*b1*b2*b11*b12 + 2*b13*b14*b15*b16 =L= -2;

e3.. b1*b2*b3*b4*b8*b11 - 10*b3*b4*b6*b7*b8 - 5*b6*b7*b8*b12 + b6*b7*b9*b14*b16
      + 7*b9*b10*b14*b16 + b5*b10*b14*b15*b16 =L= -1;

e4.. 5*b5*b7*b9*b10*b14*b15*b16 - 3*b1*b2*b3*b4*b8*b11 - b3*b4*b6*b7*b8 - 2*b5*
     b10*b14*b15*b16 + b13*b14*b15*b16 =L= -1;

e5.. 3*b1*b2*b3*b4*b8*b11 - 5*b5*b7*b9*b10*b14*b15*b16 + b3*b4*b6*b7*b8 + 2*b5*
     b10*b14*b15*b16 - b13*b14*b15*b16 =L= 1;

e6.. (-4*b3*b4*b6*b7*b8) - 2*b3*b4*b8*b11 - 5*b6*b7*b9*b14*b16 + b9*b10*b14*b16
      - 9*b5*b10*b14*b15*b16 - 2*b1*b2*b11*b12 =L= -3;

e7.. 9*b1*b2*b3*b4*b8*b11 - 12*b3*b4*b8*b11 - 7*b6*b7*b8*b12 + 6*b6*b7*b9*b14*
     b16 + 2*b5*b10*b14*b15*b16 - 15*b1*b2*b11*b12 + 3*b13*b14*b15*b16 =L= -7;

e8.. 5*b1*b2*b3*b4*b8*b11 - 8*b5*b7*b9*b10*b14*b15*b16 + 2*b3*b4*b6*b7*b8 - 7*
     b3*b4*b8*b11 - b6*b7*b8*b12 - 5*b9*b10*b14*b16 - 10*b1*b2*b11*b12 =L= -1;

* set non-default levels
b1.l = 0.171747132;
b2.l = 0.843266708;
b3.l = 0.550375356;
b4.l = 0.301137904;
b5.l = 0.292212117;
b6.l = 0.224052867;
b7.l = 0.349830504;
b8.l = 0.998117627;
b9.l = 0.578733378;
b10.l = 0.991133039;
b11.l = 0.130692483;
b12.l = 0.639718759;
b13.l = 0.159517864;
b14.l = 0.250080533;
b15.l = 0.668928609;
b16.l = 0.435356381;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0