MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance hs62

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
-26272.54101000 p1 ( gdx sol )
(infeas: 3e-10)
Other points (infeas > 1e-08)  
Dual Bounds
-26278.31113000 (ANTIGONE)
-26272.58268000 (BARON)
-26277.81464000 (COUENNE)
-26272.70072000 (LINDO)
-26273.91314000 (SCIP)
References Hock, W and Schittkowski, K, Test Examples for Nonlinear Programming Codes, Springer Verlag, 1981.
Source GAMS Model Library model hs62
Application Test Problem
Added to library 31 Jul 2001
Problem type NLP
#Variables 3
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 3
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type nonlinear
Objective curvature nonconcave
#Nonzeros in Objective 3
#Nonlinear Nonzeros in Objective 3
#Constraints 1
#Linear Constraints 0
#Quadratic Constraints 1
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions div log
Constraints curvature indefinite
#Nonzeros in Jacobian 3
#Nonlinear Nonzeros in Jacobian 3
#Nonzeros in (Upper-Left) Hessian of Lagrangian 9
#Nonzeros in Diagonal of Hessian of Lagrangian 3
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 3
Maximal blocksize in Hessian of Lagrangian 3
Average blocksize in Hessian of Lagrangian 3.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 3.0000e-02
Maximal coefficient 2.9000e+02
Infeasibility of initial point 20
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          2        2        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          4        4        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*          7        1        6        0
*
*  Solve m using NLP minimizing objvar;


Variables  objvar,x2,x3,x4;

Positive Variables  x2,x3,x4;

Equations  e1,e2;


e1.. 32.174*(255*log((0.03 + x2 + x3 + x4)/(0.03 + 0.09*x2 + x3 + x4)) + 280*
     log((0.03 + x3 + x4)/(0.03 + 0.07*x3 + x4)) + 290*log((0.03 + x4)/(0.03 + 
     0.13*x4))) + objvar =E= 0;

e2.. 20*sqr((-1) + x2 + x3 + x4) =E= 0;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0