MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance hvycrash
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -218500000.00000000 (SCIP) |
Referencesⓘ | Ivashkevich, A. K., Multistage US spacecraft Space Shuttle, 1976. Survey of foreign papers (Part 11), Orbital Craft. Tyatushkin, A. I., Zholudev, A. I., and Erinchek, N. M., The gradient method for solving optimal control problems with phase constraints. In Davisson, L. D., A. G. J. MacFarlane, Kwakernaak, H., Massey, J. L., Tsypkin, Ya Z., Viterbi, A. J., and Kall, Peter, Eds, System Modelling and Optimization: Proceedings of the 15th IFIP Conference Zurich, Switzerland, September 2-6, 1991, Springer Berlin Heidelberg, Berlin, Heidelberg, 1992, 456-464. |
Sourceⓘ | CUTE model hvycrash |
Applicationⓘ | Spacecraft Landing |
Added to libraryⓘ | 06 Feb 2017 |
Problem typeⓘ | NLP |
#Variablesⓘ | 201 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 150 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 150 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 150 |
Operands in Gen. Nonlin. Functionsⓘ | cos div mul |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 599 |
#Nonlinear Nonzeros in Jacobianⓘ | 450 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 450 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 150 |
#Blocks in Hessian of Lagrangianⓘ | 50 |
Minimal blocksize in Hessian of Lagrangianⓘ | 3 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 4.3700e-03 |
Maximal coefficientⓘ | 1.0000e+00 |
Infeasibility of initial pointⓘ | 39.9 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 151 151 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 202 202 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 601 151 450 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116 ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129 ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142 ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155 ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168 ,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181 ,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194 ,x195,x196,x197,x198,x199,x200,x201,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50 ,x101; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151; e1.. 0.00437*cos(x1)/((0.0162079 + 0.486237*x51*x51)*x102*x102) - x201 =E= 0; e2.. (-1/x102) - cos(x1)/((0.0162079 + 0.486237*x51*x51)*x102*x102*x102) =E= 0; e3.. 0.00437*x51/((0.01 + 0.3*x51*x51)*x102*x102) - 0.00437*cos(x1)/((0.0162079 + 0.486237*x51*x51)*x102*x102*x102*x102) - 0.1*x1 + 0.1*x101 =E= 0; e4.. 0.00437*cos(x2)/((0.0162079 + 0.486237*x52*x52)*x103*x103) - x200 + x201 =E= 0; e5.. (-1/x103) - cos(x2)/((0.0162079 + 0.486237*x52*x52)*x103*x103*x103) =E= 0; e6.. 0.00437*x52/((0.01 + 0.3*x52*x52)*x103*x103) - 0.00437*cos(x2)/((0.0162079 + 0.486237*x52*x52)*x103*x103*x103*x103) - 0.1*x2 + 0.1*x1 =E= 0; e7.. 0.00437*cos(x3)/((0.0162079 + 0.486237*x53*x53)*x104*x104) - x199 + x200 =E= 0; e8.. (-1/x104) - cos(x3)/((0.0162079 + 0.486237*x53*x53)*x104*x104*x104) =E= 0; e9.. 0.00437*x53/((0.01 + 0.3*x53*x53)*x104*x104) - 0.00437*cos(x3)/((0.0162079 + 0.486237*x53*x53)*x104*x104*x104*x104) - 0.1*x3 + 0.1*x2 =E= 0; e10.. 0.00437*cos(x4)/((0.0162079 + 0.486237*x54*x54)*x105*x105) - x198 + x199 =E= 0; e11.. (-1/x105) - cos(x4)/((0.0162079 + 0.486237*x54*x54)*x105*x105*x105) =E= 0 ; e12.. 0.00437*x54/((0.01 + 0.3*x54*x54)*x105*x105) - 0.00437*cos(x4)/(( 0.0162079 + 0.486237*x54*x54)*x105*x105*x105*x105) - 0.1*x4 + 0.1*x3 =E= 0; e13.. 0.00437*cos(x5)/((0.0162079 + 0.486237*x55*x55)*x106*x106) - x197 + x198 =E= 0; e14.. (-1/x106) - cos(x5)/((0.0162079 + 0.486237*x55*x55)*x106*x106*x106) =E= 0 ; e15.. 0.00437*x55/((0.01 + 0.3*x55*x55)*x106*x106) - 0.00437*cos(x5)/(( 0.0162079 + 0.486237*x55*x55)*x106*x106*x106*x106) - 0.1*x5 + 0.1*x4 =E= 0; e16.. 0.00437*cos(x6)/((0.0162079 + 0.486237*x56*x56)*x107*x107) - x196 + x197 =E= 0; e17.. (-1/x107) - cos(x6)/((0.0162079 + 0.486237*x56*x56)*x107*x107*x107) =E= 0 ; e18.. 0.00437*x56/((0.01 + 0.3*x56*x56)*x107*x107) - 0.00437*cos(x6)/(( 0.0162079 + 0.486237*x56*x56)*x107*x107*x107*x107) - 0.1*x6 + 0.1*x5 =E= 0; e19.. 0.00437*cos(x7)/((0.0162079 + 0.486237*x57*x57)*x108*x108) - x195 + x196 =E= 0; e20.. (-1/x108) - cos(x7)/((0.0162079 + 0.486237*x57*x57)*x108*x108*x108) =E= 0 ; e21.. 0.00437*x57/((0.01 + 0.3*x57*x57)*x108*x108) - 0.00437*cos(x7)/(( 0.0162079 + 0.486237*x57*x57)*x108*x108*x108*x108) - 0.1*x7 + 0.1*x6 =E= 0; e22.. 0.00437*cos(x8)/((0.0162079 + 0.486237*x58*x58)*x109*x109) - x194 + x195 =E= 0; e23.. (-1/x109) - cos(x8)/((0.0162079 + 0.486237*x58*x58)*x109*x109*x109) =E= 0 ; e24.. 0.00437*x58/((0.01 + 0.3*x58*x58)*x109*x109) - 0.00437*cos(x8)/(( 0.0162079 + 0.486237*x58*x58)*x109*x109*x109*x109) - 0.1*x8 + 0.1*x7 =E= 0; e25.. 0.00437*cos(x9)/((0.0162079 + 0.486237*x59*x59)*x110*x110) - x193 + x194 =E= 0; e26.. (-1/x110) - cos(x9)/((0.0162079 + 0.486237*x59*x59)*x110*x110*x110) =E= 0 ; e27.. 0.00437*x59/((0.01 + 0.3*x59*x59)*x110*x110) - 0.00437*cos(x9)/(( 0.0162079 + 0.486237*x59*x59)*x110*x110*x110*x110) - 0.1*x9 + 0.1*x8 =E= 0; e28.. 0.00437*cos(x10)/((0.0162079 + 0.486237*x60*x60)*x111*x111) - x192 + x193 =E= 0; e29.. (-1/x111) - cos(x10)/((0.0162079 + 0.486237*x60*x60)*x111*x111*x111) =E= 0; e30.. 0.00437*x60/((0.01 + 0.3*x60*x60)*x111*x111) - 0.00437*cos(x10)/(( 0.0162079 + 0.486237*x60*x60)*x111*x111*x111*x111) - 0.1*x10 + 0.1*x9 =E= 0; e31.. 0.00437*cos(x11)/((0.0162079 + 0.486237*x61*x61)*x112*x112) - x191 + x192 =E= 0; e32.. (-1/x112) - cos(x11)/((0.0162079 + 0.486237*x61*x61)*x112*x112*x112) =E= 0; e33.. 0.00437*x61/((0.01 + 0.3*x61*x61)*x112*x112) - 0.00437*cos(x11)/(( 0.0162079 + 0.486237*x61*x61)*x112*x112*x112*x112) - 0.1*x11 + 0.1*x10 =E= 0; e34.. 0.00437*cos(x12)/((0.0162079 + 0.486237*x62*x62)*x113*x113) - x190 + x191 =E= 0; e35.. (-1/x113) - cos(x12)/((0.0162079 + 0.486237*x62*x62)*x113*x113*x113) =E= 0; e36.. 0.00437*x62/((0.01 + 0.3*x62*x62)*x113*x113) - 0.00437*cos(x12)/(( 0.0162079 + 0.486237*x62*x62)*x113*x113*x113*x113) - 0.1*x12 + 0.1*x11 =E= 0; e37.. 0.00437*cos(x13)/((0.0162079 + 0.486237*x63*x63)*x114*x114) - x189 + x190 =E= 0; e38.. (-1/x114) - cos(x13)/((0.0162079 + 0.486237*x63*x63)*x114*x114*x114) =E= 0; e39.. 0.00437*x63/((0.01 + 0.3*x63*x63)*x114*x114) - 0.00437*cos(x13)/(( 0.0162079 + 0.486237*x63*x63)*x114*x114*x114*x114) - 0.1*x13 + 0.1*x12 =E= 0; e40.. 0.00437*cos(x14)/((0.0162079 + 0.486237*x64*x64)*x115*x115) - x188 + x189 =E= 0; e41.. (-1/x115) - cos(x14)/((0.0162079 + 0.486237*x64*x64)*x115*x115*x115) =E= 0; e42.. 0.00437*x64/((0.01 + 0.3*x64*x64)*x115*x115) - 0.00437*cos(x14)/(( 0.0162079 + 0.486237*x64*x64)*x115*x115*x115*x115) - 0.1*x14 + 0.1*x13 =E= 0; e43.. 0.00437*cos(x15)/((0.0162079 + 0.486237*x65*x65)*x116*x116) - x187 + x188 =E= 0; e44.. (-1/x116) - cos(x15)/((0.0162079 + 0.486237*x65*x65)*x116*x116*x116) =E= 0; e45.. 0.00437*x65/((0.01 + 0.3*x65*x65)*x116*x116) - 0.00437*cos(x15)/(( 0.0162079 + 0.486237*x65*x65)*x116*x116*x116*x116) - 0.1*x15 + 0.1*x14 =E= 0; e46.. 0.00437*cos(x16)/((0.0162079 + 0.486237*x66*x66)*x117*x117) - x186 + x187 =E= 0; e47.. (-1/x117) - cos(x16)/((0.0162079 + 0.486237*x66*x66)*x117*x117*x117) =E= 0; e48.. 0.00437*x66/((0.01 + 0.3*x66*x66)*x117*x117) - 0.00437*cos(x16)/(( 0.0162079 + 0.486237*x66*x66)*x117*x117*x117*x117) - 0.1*x16 + 0.1*x15 =E= 0; e49.. 0.00437*cos(x17)/((0.0162079 + 0.486237*x67*x67)*x118*x118) - x185 + x186 =E= 0; e50.. (-1/x118) - cos(x17)/((0.0162079 + 0.486237*x67*x67)*x118*x118*x118) =E= 0; e51.. 0.00437*x67/((0.01 + 0.3*x67*x67)*x118*x118) - 0.00437*cos(x17)/(( 0.0162079 + 0.486237*x67*x67)*x118*x118*x118*x118) - 0.1*x17 + 0.1*x16 =E= 0; e52.. 0.00437*cos(x18)/((0.0162079 + 0.486237*x68*x68)*x119*x119) - x184 + x185 =E= 0; e53.. (-1/x119) - cos(x18)/((0.0162079 + 0.486237*x68*x68)*x119*x119*x119) =E= 0; e54.. 0.00437*x68/((0.01 + 0.3*x68*x68)*x119*x119) - 0.00437*cos(x18)/(( 0.0162079 + 0.486237*x68*x68)*x119*x119*x119*x119) - 0.1*x18 + 0.1*x17 =E= 0; e55.. 0.00437*cos(x19)/((0.0162079 + 0.486237*x69*x69)*x120*x120) - x183 + x184 =E= 0; e56.. (-1/x120) - cos(x19)/((0.0162079 + 0.486237*x69*x69)*x120*x120*x120) =E= 0; e57.. 0.00437*x69/((0.01 + 0.3*x69*x69)*x120*x120) - 0.00437*cos(x19)/(( 0.0162079 + 0.486237*x69*x69)*x120*x120*x120*x120) - 0.1*x19 + 0.1*x18 =E= 0; e58.. 0.00437*cos(x20)/((0.0162079 + 0.486237*x70*x70)*x121*x121) - x182 + x183 =E= 0; e59.. (-1/x121) - cos(x20)/((0.0162079 + 0.486237*x70*x70)*x121*x121*x121) =E= 0; e60.. 0.00437*x70/((0.01 + 0.3*x70*x70)*x121*x121) - 0.00437*cos(x20)/(( 0.0162079 + 0.486237*x70*x70)*x121*x121*x121*x121) - 0.1*x20 + 0.1*x19 =E= 0; e61.. 0.00437*cos(x21)/((0.0162079 + 0.486237*x71*x71)*x122*x122) - x181 + x182 =E= 0; e62.. (-1/x122) - cos(x21)/((0.0162079 + 0.486237*x71*x71)*x122*x122*x122) =E= 0; e63.. 0.00437*x71/((0.01 + 0.3*x71*x71)*x122*x122) - 0.00437*cos(x21)/(( 0.0162079 + 0.486237*x71*x71)*x122*x122*x122*x122) - 0.1*x21 + 0.1*x20 =E= 0; e64.. 0.00437*cos(x22)/((0.0162079 + 0.486237*x72*x72)*x123*x123) - x180 + x181 =E= 0; e65.. (-1/x123) - cos(x22)/((0.0162079 + 0.486237*x72*x72)*x123*x123*x123) =E= 0; e66.. 0.00437*x72/((0.01 + 0.3*x72*x72)*x123*x123) - 0.00437*cos(x22)/(( 0.0162079 + 0.486237*x72*x72)*x123*x123*x123*x123) - 0.1*x22 + 0.1*x21 =E= 0; e67.. 0.00437*cos(x23)/((0.0162079 + 0.486237*x73*x73)*x124*x124) - x179 + x180 =E= 0; e68.. (-1/x124) - cos(x23)/((0.0162079 + 0.486237*x73*x73)*x124*x124*x124) =E= 0; e69.. 0.00437*x73/((0.01 + 0.3*x73*x73)*x124*x124) - 0.00437*cos(x23)/(( 0.0162079 + 0.486237*x73*x73)*x124*x124*x124*x124) - 0.1*x23 + 0.1*x22 =E= 0; e70.. 0.00437*cos(x24)/((0.0162079 + 0.486237*x74*x74)*x125*x125) - x178 + x179 =E= 0; e71.. (-1/x125) - cos(x24)/((0.0162079 + 0.486237*x74*x74)*x125*x125*x125) =E= 0; e72.. 0.00437*x74/((0.01 + 0.3*x74*x74)*x125*x125) - 0.00437*cos(x24)/(( 0.0162079 + 0.486237*x74*x74)*x125*x125*x125*x125) - 0.1*x24 + 0.1*x23 =E= 0; e73.. 0.00437*cos(x25)/((0.0162079 + 0.486237*x75*x75)*x126*x126) - x177 + x178 =E= 0; e74.. (-1/x126) - cos(x25)/((0.0162079 + 0.486237*x75*x75)*x126*x126*x126) =E= 0; e75.. 0.00437*x75/((0.01 + 0.3*x75*x75)*x126*x126) - 0.00437*cos(x25)/(( 0.0162079 + 0.486237*x75*x75)*x126*x126*x126*x126) - 0.1*x25 + 0.1*x24 =E= 0; e76.. 0.00437*cos(x26)/((0.0162079 + 0.486237*x76*x76)*x127*x127) - x176 + x177 =E= 0; e77.. (-1/x127) - cos(x26)/((0.0162079 + 0.486237*x76*x76)*x127*x127*x127) =E= 0; e78.. 0.00437*x76/((0.01 + 0.3*x76*x76)*x127*x127) - 0.00437*cos(x26)/(( 0.0162079 + 0.486237*x76*x76)*x127*x127*x127*x127) - 0.1*x26 + 0.1*x25 =E= 0; e79.. 0.00437*cos(x27)/((0.0162079 + 0.486237*x77*x77)*x128*x128) - x175 + x176 =E= 0; e80.. (-1/x128) - cos(x27)/((0.0162079 + 0.486237*x77*x77)*x128*x128*x128) =E= 0; e81.. 0.00437*x77/((0.01 + 0.3*x77*x77)*x128*x128) - 0.00437*cos(x27)/(( 0.0162079 + 0.486237*x77*x77)*x128*x128*x128*x128) - 0.1*x27 + 0.1*x26 =E= 0; e82.. 0.00437*cos(x28)/((0.0162079 + 0.486237*x78*x78)*x129*x129) - x174 + x175 =E= 0; e83.. (-1/x129) - cos(x28)/((0.0162079 + 0.486237*x78*x78)*x129*x129*x129) =E= 0; e84.. 0.00437*x78/((0.01 + 0.3*x78*x78)*x129*x129) - 0.00437*cos(x28)/(( 0.0162079 + 0.486237*x78*x78)*x129*x129*x129*x129) - 0.1*x28 + 0.1*x27 =E= 0; e85.. 0.00437*cos(x29)/((0.0162079 + 0.486237*x79*x79)*x130*x130) - x173 + x174 =E= 0; e86.. (-1/x130) - cos(x29)/((0.0162079 + 0.486237*x79*x79)*x130*x130*x130) =E= 0; e87.. 0.00437*x79/((0.01 + 0.3*x79*x79)*x130*x130) - 0.00437*cos(x29)/(( 0.0162079 + 0.486237*x79*x79)*x130*x130*x130*x130) - 0.1*x29 + 0.1*x28 =E= 0; e88.. 0.00437*cos(x30)/((0.0162079 + 0.486237*x80*x80)*x131*x131) - x172 + x173 =E= 0; e89.. (-1/x131) - cos(x30)/((0.0162079 + 0.486237*x80*x80)*x131*x131*x131) =E= 0; e90.. 0.00437*x80/((0.01 + 0.3*x80*x80)*x131*x131) - 0.00437*cos(x30)/(( 0.0162079 + 0.486237*x80*x80)*x131*x131*x131*x131) - 0.1*x30 + 0.1*x29 =E= 0; e91.. 0.00437*cos(x31)/((0.0162079 + 0.486237*x81*x81)*x132*x132) - x171 + x172 =E= 0; e92.. (-1/x132) - cos(x31)/((0.0162079 + 0.486237*x81*x81)*x132*x132*x132) =E= 0; e93.. 0.00437*x81/((0.01 + 0.3*x81*x81)*x132*x132) - 0.00437*cos(x31)/(( 0.0162079 + 0.486237*x81*x81)*x132*x132*x132*x132) - 0.1*x31 + 0.1*x30 =E= 0; e94.. 0.00437*cos(x32)/((0.0162079 + 0.486237*x82*x82)*x133*x133) - x170 + x171 =E= 0; e95.. (-1/x133) - cos(x32)/((0.0162079 + 0.486237*x82*x82)*x133*x133*x133) =E= 0; e96.. 0.00437*x82/((0.01 + 0.3*x82*x82)*x133*x133) - 0.00437*cos(x32)/(( 0.0162079 + 0.486237*x82*x82)*x133*x133*x133*x133) - 0.1*x32 + 0.1*x31 =E= 0; e97.. 0.00437*cos(x33)/((0.0162079 + 0.486237*x83*x83)*x134*x134) - x169 + x170 =E= 0; e98.. (-1/x134) - cos(x33)/((0.0162079 + 0.486237*x83*x83)*x134*x134*x134) =E= 0; e99.. 0.00437*x83/((0.01 + 0.3*x83*x83)*x134*x134) - 0.00437*cos(x33)/(( 0.0162079 + 0.486237*x83*x83)*x134*x134*x134*x134) - 0.1*x33 + 0.1*x32 =E= 0; e100.. 0.00437*cos(x34)/((0.0162079 + 0.486237*x84*x84)*x135*x135) - x168 + x169 =E= 0; e101.. (-1/x135) - cos(x34)/((0.0162079 + 0.486237*x84*x84)*x135*x135*x135) =E= 0; e102.. 0.00437*x84/((0.01 + 0.3*x84*x84)*x135*x135) - 0.00437*cos(x34)/(( 0.0162079 + 0.486237*x84*x84)*x135*x135*x135*x135) - 0.1*x34 + 0.1*x33 =E= 0; e103.. 0.00437*cos(x35)/((0.0162079 + 0.486237*x85*x85)*x136*x136) - x167 + x168 =E= 0; e104.. (-1/x136) - cos(x35)/((0.0162079 + 0.486237*x85*x85)*x136*x136*x136) =E= 0; e105.. 0.00437*x85/((0.01 + 0.3*x85*x85)*x136*x136) - 0.00437*cos(x35)/(( 0.0162079 + 0.486237*x85*x85)*x136*x136*x136*x136) - 0.1*x35 + 0.1*x34 =E= 0; e106.. 0.00437*cos(x36)/((0.0162079 + 0.486237*x86*x86)*x137*x137) - x166 + x167 =E= 0; e107.. (-1/x137) - cos(x36)/((0.0162079 + 0.486237*x86*x86)*x137*x137*x137) =E= 0; e108.. 0.00437*x86/((0.01 + 0.3*x86*x86)*x137*x137) - 0.00437*cos(x36)/(( 0.0162079 + 0.486237*x86*x86)*x137*x137*x137*x137) - 0.1*x36 + 0.1*x35 =E= 0; e109.. 0.00437*cos(x37)/((0.0162079 + 0.486237*x87*x87)*x138*x138) - x165 + x166 =E= 0; e110.. (-1/x138) - cos(x37)/((0.0162079 + 0.486237*x87*x87)*x138*x138*x138) =E= 0; e111.. 0.00437*x87/((0.01 + 0.3*x87*x87)*x138*x138) - 0.00437*cos(x37)/(( 0.0162079 + 0.486237*x87*x87)*x138*x138*x138*x138) - 0.1*x37 + 0.1*x36 =E= 0; e112.. 0.00437*cos(x38)/((0.0162079 + 0.486237*x88*x88)*x139*x139) - x164 + x165 =E= 0; e113.. (-1/x139) - cos(x38)/((0.0162079 + 0.486237*x88*x88)*x139*x139*x139) =E= 0; e114.. 0.00437*x88/((0.01 + 0.3*x88*x88)*x139*x139) - 0.00437*cos(x38)/(( 0.0162079 + 0.486237*x88*x88)*x139*x139*x139*x139) - 0.1*x38 + 0.1*x37 =E= 0; e115.. 0.00437*cos(x39)/((0.0162079 + 0.486237*x89*x89)*x140*x140) - x163 + x164 =E= 0; e116.. (-1/x140) - cos(x39)/((0.0162079 + 0.486237*x89*x89)*x140*x140*x140) =E= 0; e117.. 0.00437*x89/((0.01 + 0.3*x89*x89)*x140*x140) - 0.00437*cos(x39)/(( 0.0162079 + 0.486237*x89*x89)*x140*x140*x140*x140) - 0.1*x39 + 0.1*x38 =E= 0; e118.. 0.00437*cos(x40)/((0.0162079 + 0.486237*x90*x90)*x141*x141) - x162 + x163 =E= 0; e119.. (-1/x141) - cos(x40)/((0.0162079 + 0.486237*x90*x90)*x141*x141*x141) =E= 0; e120.. 0.00437*x90/((0.01 + 0.3*x90*x90)*x141*x141) - 0.00437*cos(x40)/(( 0.0162079 + 0.486237*x90*x90)*x141*x141*x141*x141) - 0.1*x40 + 0.1*x39 =E= 0; e121.. 0.00437*cos(x41)/((0.0162079 + 0.486237*x91*x91)*x142*x142) - x161 + x162 =E= 0; e122.. (-1/x142) - cos(x41)/((0.0162079 + 0.486237*x91*x91)*x142*x142*x142) =E= 0; e123.. 0.00437*x91/((0.01 + 0.3*x91*x91)*x142*x142) - 0.00437*cos(x41)/(( 0.0162079 + 0.486237*x91*x91)*x142*x142*x142*x142) - 0.1*x41 + 0.1*x40 =E= 0; e124.. 0.00437*cos(x42)/((0.0162079 + 0.486237*x92*x92)*x143*x143) - x160 + x161 =E= 0; e125.. (-1/x143) - cos(x42)/((0.0162079 + 0.486237*x92*x92)*x143*x143*x143) =E= 0; e126.. 0.00437*x92/((0.01 + 0.3*x92*x92)*x143*x143) - 0.00437*cos(x42)/(( 0.0162079 + 0.486237*x92*x92)*x143*x143*x143*x143) - 0.1*x42 + 0.1*x41 =E= 0; e127.. 0.00437*cos(x43)/((0.0162079 + 0.486237*x93*x93)*x144*x144) - x159 + x160 =E= 0; e128.. (-1/x144) - cos(x43)/((0.0162079 + 0.486237*x93*x93)*x144*x144*x144) =E= 0; e129.. 0.00437*x93/((0.01 + 0.3*x93*x93)*x144*x144) - 0.00437*cos(x43)/(( 0.0162079 + 0.486237*x93*x93)*x144*x144*x144*x144) - 0.1*x43 + 0.1*x42 =E= 0; e130.. 0.00437*cos(x44)/((0.0162079 + 0.486237*x94*x94)*x145*x145) - x158 + x159 =E= 0; e131.. (-1/x145) - cos(x44)/((0.0162079 + 0.486237*x94*x94)*x145*x145*x145) =E= 0; e132.. 0.00437*x94/((0.01 + 0.3*x94*x94)*x145*x145) - 0.00437*cos(x44)/(( 0.0162079 + 0.486237*x94*x94)*x145*x145*x145*x145) - 0.1*x44 + 0.1*x43 =E= 0; e133.. 0.00437*cos(x45)/((0.0162079 + 0.486237*x95*x95)*x146*x146) - x157 + x158 =E= 0; e134.. (-1/x146) - cos(x45)/((0.0162079 + 0.486237*x95*x95)*x146*x146*x146) =E= 0; e135.. 0.00437*x95/((0.01 + 0.3*x95*x95)*x146*x146) - 0.00437*cos(x45)/(( 0.0162079 + 0.486237*x95*x95)*x146*x146*x146*x146) - 0.1*x45 + 0.1*x44 =E= 0; e136.. 0.00437*cos(x46)/((0.0162079 + 0.486237*x96*x96)*x147*x147) - x156 + x157 =E= 0; e137.. (-1/x147) - cos(x46)/((0.0162079 + 0.486237*x96*x96)*x147*x147*x147) =E= 0; e138.. 0.00437*x96/((0.01 + 0.3*x96*x96)*x147*x147) - 0.00437*cos(x46)/(( 0.0162079 + 0.486237*x96*x96)*x147*x147*x147*x147) - 0.1*x46 + 0.1*x45 =E= 0; e139.. 0.00437*cos(x47)/((0.0162079 + 0.486237*x97*x97)*x148*x148) - x155 + x156 =E= 0; e140.. (-1/x148) - cos(x47)/((0.0162079 + 0.486237*x97*x97)*x148*x148*x148) =E= 0; e141.. 0.00437*x97/((0.01 + 0.3*x97*x97)*x148*x148) - 0.00437*cos(x47)/(( 0.0162079 + 0.486237*x97*x97)*x148*x148*x148*x148) - 0.1*x47 + 0.1*x46 =E= 0; e142.. 0.00437*cos(x48)/((0.0162079 + 0.486237*x98*x98)*x149*x149) - x154 + x155 =E= 0; e143.. (-1/x149) - cos(x48)/((0.0162079 + 0.486237*x98*x98)*x149*x149*x149) =E= 0; e144.. 0.00437*x98/((0.01 + 0.3*x98*x98)*x149*x149) - 0.00437*cos(x48)/(( 0.0162079 + 0.486237*x98*x98)*x149*x149*x149*x149) - 0.1*x48 + 0.1*x47 =E= 0; e145.. 0.00437*cos(x49)/((0.0162079 + 0.486237*x99*x99)*x150*x150) - x153 + x154 =E= 0; e146.. (-1/x150) - cos(x49)/((0.0162079 + 0.486237*x99*x99)*x150*x150*x150) =E= 0; e147.. 0.00437*x99/((0.01 + 0.3*x99*x99)*x150*x150) - 0.00437*cos(x49)/(( 0.0162079 + 0.486237*x99*x99)*x150*x150*x150*x150) - 0.1*x49 + 0.1*x48 =E= 0; e148.. 0.00437*cos(x50)/((0.0162079 + 0.486237*x100*x100)*x151*x151) - x152 + x153 =E= 0; e149.. (-1/x151) - cos(x50)/((0.0162079 + 0.486237*x100*x100)*x151*x151*x151) =E= 0; e150.. 0.00437*x100/((0.01 + 0.3*x100*x100)*x151*x151) - 0.00437*cos(x50)/(( 0.0162079 + 0.486237*x100*x100)*x151*x151*x151*x151) - 0.1*x50 + 0.1*x49 =E= 0; e151.. - x152 + objvar =E= 0; * set non-default bounds x1.up = 6.2831854; x2.up = 6.2831854; x3.up = 6.2831854; x4.up = 6.2831854; x5.up = 6.2831854; x6.up = 6.2831854; x7.up = 6.2831854; x8.up = 6.2831854; x9.up = 6.2831854; x10.up = 6.2831854; x11.up = 6.2831854; x12.up = 6.2831854; x13.up = 6.2831854; x14.up = 6.2831854; x15.up = 6.2831854; x16.up = 6.2831854; x17.up = 6.2831854; x18.up = 6.2831854; x19.up = 6.2831854; x20.up = 6.2831854; x21.up = 6.2831854; x22.up = 6.2831854; x23.up = 6.2831854; x24.up = 6.2831854; x25.up = 6.2831854; x26.up = 6.2831854; x27.up = 6.2831854; x28.up = 6.2831854; x29.up = 6.2831854; x30.up = 6.2831854; x31.up = 6.2831854; x32.up = 6.2831854; x33.up = 6.2831854; x34.up = 6.2831854; x35.up = 6.2831854; x36.up = 6.2831854; x37.up = 6.2831854; x38.up = 6.2831854; x39.up = 6.2831854; x40.up = 6.2831854; x41.up = 6.2831854; x42.up = 6.2831854; x43.up = 6.2831854; x44.up = 6.2831854; x45.up = 6.2831854; x46.up = 6.2831854; x47.up = 6.2831854; x48.up = 6.2831854; x49.up = 6.2831854; x50.up = 6.2831854; x51.lo = 0.08; x51.up = 0.417; x52.lo = 0.08; x52.up = 0.417; x53.lo = 0.08; x53.up = 0.417; x54.lo = 0.08; x54.up = 0.417; x55.lo = 0.08; x55.up = 0.417; x56.lo = 0.08; x56.up = 0.417; x57.lo = 0.08; x57.up = 0.417; x58.lo = 0.08; x58.up = 0.417; x59.lo = 0.08; x59.up = 0.417; x60.lo = 0.08; x60.up = 0.417; x61.lo = 0.08; x61.up = 0.417; x62.lo = 0.08; x62.up = 0.417; x63.lo = 0.08; x63.up = 0.417; x64.lo = 0.08; x64.up = 0.417; x65.lo = 0.08; x65.up = 0.417; x66.lo = 0.08; x66.up = 0.417; x67.lo = 0.08; x67.up = 0.417; x68.lo = 0.08; x68.up = 0.417; x69.lo = 0.08; x69.up = 0.417; x70.lo = 0.08; x70.up = 0.417; x71.lo = 0.08; x71.up = 0.417; x72.lo = 0.08; x72.up = 0.417; x73.lo = 0.08; x73.up = 0.417; x74.lo = 0.08; x74.up = 0.417; x75.lo = 0.08; x75.up = 0.417; x76.lo = 0.08; x76.up = 0.417; x77.lo = 0.08; x77.up = 0.417; x78.lo = 0.08; x78.up = 0.417; x79.lo = 0.08; x79.up = 0.417; x80.lo = 0.08; x80.up = 0.417; x81.lo = 0.08; x81.up = 0.417; x82.lo = 0.08; x82.up = 0.417; x83.lo = 0.08; x83.up = 0.417; x84.lo = 0.08; x84.up = 0.417; x85.lo = 0.08; x85.up = 0.417; x86.lo = 0.08; x86.up = 0.417; x87.lo = 0.08; x87.up = 0.417; x88.lo = 0.08; x88.up = 0.417; x89.lo = 0.08; x89.up = 0.417; x90.lo = 0.08; x90.up = 0.417; x91.lo = 0.08; x91.up = 0.417; x92.lo = 0.08; x92.up = 0.417; x93.lo = 0.08; x93.up = 0.417; x94.lo = 0.08; x94.up = 0.417; x95.lo = 0.08; x95.up = 0.417; x96.lo = 0.08; x96.up = 0.417; x97.lo = 0.08; x97.up = 0.417; x98.lo = 0.08; x98.up = 0.417; x99.lo = 0.08; x99.up = 0.417; x100.lo = 0.08; x100.up = 0.417; x101.up = 6.2831854; * set non-default levels x102.l = 1.5; x103.l = 1.5; x104.l = 1.5; x105.l = 1.5; x106.l = 1.5; x107.l = 1.5; x108.l = 1.5; x109.l = 1.5; x110.l = 1.5; x111.l = 1.5; x112.l = 1.5; x113.l = 1.5; x114.l = 1.5; x115.l = 1.5; x116.l = 1.5; x117.l = 1.5; x118.l = 1.5; x119.l = 1.5; x120.l = 1.5; x121.l = 1.5; x122.l = 1.5; x123.l = 1.5; x124.l = 1.5; x125.l = 1.5; x126.l = 1.5; x127.l = 1.5; x128.l = 1.5; x129.l = 1.5; x130.l = 1.5; x131.l = 1.5; x132.l = 1.5; x133.l = 1.5; x134.l = 1.5; x135.l = 1.5; x136.l = 1.5; x137.l = 1.5; x138.l = 1.5; x139.l = 1.5; x140.l = 1.5; x141.l = 1.5; x142.l = 1.5; x143.l = 1.5; x144.l = 1.5; x145.l = 1.5; x146.l = 1.5; x147.l = 1.5; x148.l = 1.5; x149.l = 1.5; x150.l = 1.5; x151.l = 1.09905; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91