MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance inscribedsquare02
The inscribed square problem, also known as the square peg problem or the Toeplitz' conjecture, is an unsolved question in geometry: Does every plane simple closed curve contain all four vertices of some square? This is true if the curve is convex or piecewise smooth and in other special cases. The problem was proposed by Otto Toeplitz in 1911. See also https://en.wikipedia.org/wiki/Inscribed_square_problem This instance computes a maximal inscribing square for the curve (sin(t)*cos(t-t*t), t*sin(t)), t in [-pi,pi].
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 0.96801687 (COUENNE) 0.96801458 (LINDO) 0.96801921 (SCIP) |
Referencesⓘ | Toeplitz, Otto, Über einige Aufgaben der Analysis situs, Verhandlungen der Schweizerischen Naturforschenden Gesellschaft, 94, 1911, 197. |
Sourceⓘ | Benjamin Müller and Felipe Serrano |
Applicationⓘ | Geometry |
Added to libraryⓘ | 25 Sep 2019 |
Problem typeⓘ | NLP |
#Variablesⓘ | 8 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 6 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | max |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 2 |
#Nonlinear Nonzeros in Objectiveⓘ | 2 |
#Constraintsⓘ | 8 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 8 |
Operands in Gen. Nonlin. Functionsⓘ | cos mul sin |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 24 |
#Nonlinear Nonzeros in Jacobianⓘ | 8 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 6 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
#Blocks in Hessian of Lagrangianⓘ | 6 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 1.0000e+00 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 9 9 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 9 9 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 27 17 10 0 * * Solve m using DNLP maximizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9; Positive Variables x8,x9; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9; e1.. -(sqr(x8) + sqr(x9)) + objvar =E= 0; e2.. sin(x2)*cos(x2 - x2*x2) - x6 =E= 0; e3.. sin(x2)*x2 - x7 =E= 0; e4.. sin(x3)*cos(x3 - x3*x3) - x6 - x8 =E= 0; e5.. sin(x3)*x3 - x7 - x9 =E= 0; e6.. sin(x4)*cos(x4 - x4*x4) - x6 + x9 =E= 0; e7.. sin(x4)*x4 - x7 - x8 =E= 0; e8.. sin(x5)*cos(x5 - x5*x5) - x6 - x8 + x9 =E= 0; e9.. sin(x5)*x5 - x7 - x8 - x9 =E= 0; * set non-default bounds x2.lo = -3.14159265358979; x2.up = 3.14159265358979; x3.lo = -3.14159265358979; x3.up = 3.14159265358979; x4.lo = -3.14159265358979; x4.up = 3.14159265358979; x5.lo = -3.14159265358979; x5.up = 3.14159265358979; * set non-default levels x2.l = -3.14159265358979; x3.l = -1.5707963267949; x5.l = 1.5707963267949; x6.l = -1.10547073912851E-16; x7.l = 3.84734138744358E-16; x8.l = 1; x9.l = 1; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% maximizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91