MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance jit1
This just-in-time flowshop problem involves P products and S stages. Each stage contains identical equipment performing the same type of operation on different products. The objective is to minimize the total equipment related cost.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 173983.32980000 (ANTIGONE) 173983.32980000 (BARON) 173983.32280000 (COUENNE) 173983.33000000 (LINDO) 173983.33000000 (SCIP) 173983.32700000 (SHOT) |
Referencesⓘ | Gutierrez, R A and Sahinidis, N V, A branch-and-bound approach for machine selection in just-in-time manufacturing systems, International Journal of Production Research, 34:3, 1996, 797-818. Gunasekaran, A, Goyal, S K, Martikainen, T, and Yli-Olli, P, Equipment Selection Problems in just-in-time Manufacturing Systems, Journal of the Operational Research Society, 44, 1993, 345-353. |
Sourceⓘ | case1 in GAMS Model Library model jit |
Applicationⓘ | Design of Just-in-Time Flowshops |
Added to libraryⓘ | 28 Feb 2014 |
Problem typeⓘ | MINLP |
#Variablesⓘ | 25 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 4 |
#Nonlinear Variablesⓘ | 12 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | signomial |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 25 |
#Nonlinear Nonzeros in Objectiveⓘ | 12 |
#Constraintsⓘ | 32 |
#Linear Constraintsⓘ | 32 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 86 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 12 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 12 |
#Blocks in Hessian of Lagrangianⓘ | 12 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.2401e-04 |
Maximal coefficientⓘ | 1.0000e+07 |
Infeasibility of initial pointⓘ | 0.0004232 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 33 13 18 2 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 26 22 0 4 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 112 100 12 0 * * Solve m using MINLP minimizing objvar; Variables i1,i2,i3,i4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,objvar; Integer Variables i1,i2,i3,i4; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33; e1.. -(7.5/x5 + 5.625/x6 + 11.25/x7 + 7.5/x8 + 8.57142857142857/x9 + 7.14285714285714/x10 + 2.85714285714286/x11 + 5.71428571428571/x12 + 8.88888888888889/x13 + 8.88888888888889/x14 + 8.88888888888889/x15 + 4.44444444444444/x16) - 5000*i1 - 5500*i2 - 4000*i3 - 6000*i4 - 6000000*x17 - 9000000*x18 - 6000000*x19 - 9000000*x20 - 8000000*x21 - 8000000*x22 - 8000000*x23 - 10000000*x24 - 8000000*x25 + objvar =E= 0; e2.. - 0.000252525252525253*i1 + x5 =E= 0; e3.. - 0.000508388408744281*i2 + x6 =E= 0; e4.. - 0.000635162601626016*i3 + x7 =E= 0; e5.. - 0.000636456211812627*i4 + x8 =E= 0; e6.. - 0.000861450107681263*i1 + x9 =E= 0; e7.. - 0.000438212094653812*i2 + x10 =E= 0; e8.. - 0.000433776749566223*i3 + x11 =E= 0; e9.. - 0.000289184499710815*i4 + x12 =E= 0; e10.. - 0.000224466891133558*i1 + x13 =E= 0; e11.. - 0.00033892560582952*i2 + x14 =E= 0; e12.. - 0.000224014336917563*i3 + x15 =E= 0; e13.. - 0.000337381916329285*i4 + x16 =E= 0; e14.. 5000*i1 + 5500*i2 + 4000*i3 + 6000*i4 =L= 6000000; e15.. 60*i1 + 50*i2 + 80*i3 + 40*i4 =L= 3000; e16.. - x5 + x6 + x17 =G= 0; e17.. - x6 + x7 + x18 =G= 0; e18.. - x7 + x8 + x19 =G= 0; e19.. - x9 + x10 + x20 =G= 0; e20.. - x10 + x11 + x21 =G= 0; e21.. - x11 + x12 + x22 =G= 0; e22.. - x13 + x14 + x23 =G= 0; e23.. - x14 + x15 + x24 =G= 0; e24.. - x15 + x16 + x25 =G= 0; e25.. x5 - x6 + x17 =G= 0; e26.. x6 - x7 + x18 =G= 0; e27.. x7 - x8 + x19 =G= 0; e28.. x9 - x10 + x20 =G= 0; e29.. x10 - x11 + x21 =G= 0; e30.. x11 - x12 + x22 =G= 0; e31.. x13 - x14 + x23 =G= 0; e32.. x14 - x15 + x24 =G= 0; e33.. x15 - x16 + x25 =G= 0; * set non-default bounds i1.lo = 1; i2.lo = 1; i3.lo = 1; i4.lo = 1; x5.lo = 0.000252525252525253; x6.lo = 0.000508388408744281; x7.lo = 0.000635162601626016; x8.lo = 0.000636456211812627; x9.lo = 0.000861450107681263; x10.lo = 0.000438212094653812; x11.lo = 0.000433776749566223; x12.lo = 0.000289184499710815; x13.lo = 0.000224466891133558; x14.lo = 0.00033892560582952; x15.lo = 0.000224014336917563; x16.lo = 0.000337381916329285; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if gamsversion 242 option intvarup = 0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91