MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance kport40
This problem computes minimal cost solutions satisfying the demand of pre-given product portfolios. It determines the number and size of reactors and gives a schedule of how may batches of each product run on each reactor.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 34.90713890 (ANTIGONE) 35.70087087 (BARON) 31.83480613 (COUENNE) 31.93889754 (LINDO) 32.66417157 (SCIP) 31.00321211 (SHOT) |
Referencesⓘ | Kallrath, Josef, Exact Computation of Global Minima of a Nonconvex Portfolio Optimization Problem. Chapter 13 in Floudas, C A and Pardalos, Panos M, Eds, Frontiers in Global Optimization, Kluwer Academic Publishers, 2004, 237-254. |
Sourceⓘ | second scenario of GAMS Model Library model kport |
Applicationⓘ | Product Portfolio Optimization |
Added to libraryⓘ | 28 Feb 2014 |
Problem typeⓘ | MINLP |
#Variablesⓘ | 267 |
#Binary Variablesⓘ | 3 |
#Integer Variablesⓘ | 111 |
#Nonlinear Variablesⓘ | 225 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 111 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 2 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 48 |
#Linear Constraintsⓘ | 10 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 37 |
#Signomial Constraintsⓘ | 1 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 504 |
#Nonlinear Nonzeros in Jacobianⓘ | 336 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 669 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 3 |
#Blocks in Hessian of Lagrangianⓘ | 3 |
Minimal blocksize in Hessian of Lagrangianⓘ | 75 |
Maximal blocksize in Hessian of Lagrangianⓘ | 75 |
Average blocksize in Hessian of Lagrangianⓘ | 75.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 3.8462e-04 |
Maximal coefficientⓘ | 2.5000e+02 |
Infeasibility of initial pointⓘ | 151.2 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 49 40 3 6 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 268 154 3 111 0 0 0 0 * FX 23 * * Nonzero counts * Total const NL DLL * 507 171 336 0 * * Solve m using MINLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86 ,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102 ,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115 ,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128 ,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141 ,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154 ,b155,b156,b157,i158,i159,i160,i161,i162,i163,i164,i165,i166,i167 ,i168,i169,i170,i171,i172,i173,i174,i175,i176,i177,i178,i179,i180 ,i181,i182,i183,i184,i185,i186,i187,i188,i189,i190,i191,i192,i193 ,i194,i195,i196,i197,i198,i199,i200,i201,i202,i203,i204,i205,i206 ,i207,i208,i209,i210,i211,i212,i213,i214,i215,i216,i217,i218,i219 ,i220,i221,i222,i223,i224,i225,i226,i227,i228,i229,i230,i231,i232 ,i233,i234,i235,i236,i237,i238,i239,i240,i241,i242,i243,i244,i245 ,i246,i247,i248,i249,i250,i251,i252,i253,i254,i255,i256,i257,i258 ,i259,i260,i261,i262,i263,i264,i265,i266,i267,i268; Positive Variables x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128 ,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141 ,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154; Binary Variables b155,b156,b157; Integer Variables i158,i159,i160,i161,i162,i163,i164,i165,i166,i167,i168,i169 ,i170,i171,i172,i173,i174,i175,i176,i177,i178,i179,i180,i181,i182 ,i183,i184,i185,i186,i187,i188,i189,i190,i191,i192,i193,i194,i195 ,i196,i197,i198,i199,i200,i201,i202,i203,i204,i205,i206,i207,i208 ,i209,i210,i211,i212,i213,i214,i215,i216,i217,i218,i219,i220,i221 ,i222,i223,i224,i225,i226,i227,i228,i229,i230,i231,i232,i233,i234 ,i235,i236,i237,i238,i239,i240,i241,i242,i243,i244,i245,i246,i247 ,i248,i249,i250,i251,i252,i253,i254,i255,i256,i257,i258,i259,i260 ,i261,i262,i263,i264,i265,i266,i267,i268; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49; e1.. objvar - x2 - x3 =E= 0; e2.. x3 - 2.45*b155 - 2.45*b156 - 2.45*b157 =E= 0; e3.. -(0.98488578017961*x115**0.5 + 0.98488578017961*x116**0.5 + 0.98488578017961*x117**0.5) + x2 =E= 0; e4.. - 168*b155 + 6*i158 + 6*i159 + 6*i160 + 6*i161 + 6*i162 + 6*i163 + 6*i164 + 6*i165 + 6*i166 + 6*i167 + 6*i168 + 6*i169 + 6*i170 + 6*i171 + 6*i172 + 6*i173 + 6*i174 + 6*i175 + 6*i176 + 6*i177 + 6*i178 + 6*i179 + 6*i180 + 6*i181 + 6*i182 + 6*i183 + 6*i184 + 6*i185 + 6*i186 + 6*i187 + 6*i188 + 6*i189 + 6*i190 + 6*i191 + 6*i192 + 6*i193 + 6*i194 =L= 0; e5.. - 168*b156 + 6*i195 + 6*i196 + 6*i197 + 6*i198 + 6*i199 + 6*i200 + 6*i201 + 6*i202 + 6*i203 + 6*i204 + 6*i205 + 6*i206 + 6*i207 + 6*i208 + 6*i209 + 6*i210 + 6*i211 + 6*i212 + 6*i213 + 6*i214 + 6*i215 + 6*i216 + 6*i217 + 6*i218 + 6*i219 + 6*i220 + 6*i221 + 6*i222 + 6*i223 + 6*i224 + 6*i225 + 6*i226 + 6*i227 + 6*i228 + 6*i229 + 6*i230 + 6*i231 =L= 0; e6.. - 168*b157 + 6*i232 + 6*i233 + 6*i234 + 6*i235 + 6*i236 + 6*i237 + 6*i238 + 6*i239 + 6*i240 + 6*i241 + 6*i242 + 6*i243 + 6*i244 + 6*i245 + 6*i246 + 6*i247 + 6*i248 + 6*i249 + 6*i250 + 6*i251 + 6*i252 + 6*i253 + 6*i254 + 6*i255 + 6*i256 + 6*i257 + 6*i258 + 6*i259 + 6*i260 + 6*i261 + 6*i262 + 6*i263 + 6*i264 + 6*i265 + 6*i266 + 6*i267 + 6*i268 =L= 0; e7.. -0.000384615384615385*(i158*x4*x115 + i195*x41*x116 + i232*x78*x117) + x118 =E= -1; e8.. -0.000434782608695652*(i159*x5*x115 + i196*x42*x116 + i233*x79*x117) + x119 =E= -1; e9.. -0.00222222222222222*(i160*x6*x115 + i197*x43*x116 + i234*x80*x117) + x120 =E= -1; e10.. -0.000833333333333333*(i161*x7*x115 + i198*x44*x116 + i235*x81*x117) + x121 =E= -1; e11.. -0.00178571428571429*(i162*x8*x115 + i199*x45*x116 + i236*x82*x117) + x122 =E= -1; e12.. -0.00188679245283019*(i163*x9*x115 + i200*x46*x116 + i237*x83*x117) + x123 =E= -1; e13.. -0.00188679245283019*(i164*x10*x115 + i201*x47*x116 + i238*x84*x117) + x124 =E= -1; e14.. -0.00714285714285714*(i165*x11*x115 + i202*x48*x116 + i239*x85*x117) + x125 =E= -1; e15.. -0.00909090909090909*(i166*x12*x115 + i203*x49*x116 + i240*x86*x117) + x126 =E= -1; e16.. -0.00909090909090909*(i167*x13*x115 + i204*x50*x116 + i241*x87*x117) + x127 =E= -1; e17.. -0.1*(i168*x14*x115 + i205*x51*x116 + i242*x88*x117) + x128 =E= -1; e18.. -0.00909090909090909*(i169*x15*x115 + i206*x52*x116 + i243*x89*x117) + x129 =E= -1; e19.. -0.0111111111111111*(i170*x16*x115 + i207*x53*x116 + i244*x90*x117) + x130 =E= -1; e20.. -0.0111111111111111*(i171*x17*x115 + i208*x54*x116 + i245*x91*x117) + x131 =E= -1; e21.. -0.0111111111111111*(i172*x18*x115 + i209*x55*x116 + i246*x92*x117) + x132 =E= -1; e22.. -0.0142857142857143*(i173*x19*x115 + i210*x56*x116 + i247*x93*x117) + x133 =E= -1; e23.. -0.02*(i174*x20*x115 + i211*x57*x116 + i248*x94*x117) + x134 =E= -1; e24.. -0.0333333333333333*(i175*x21*x115 + i212*x58*x116 + i249*x95*x117) + x135 =E= -1; e25.. -0.1*(i176*x22*x115 + i213*x59*x116 + i250*x96*x117) + x136 =E= -1; e26.. -0.1*(i177*x23*x115 + i214*x60*x116 + i251*x97*x117) + x137 =E= -1; e27.. -0.1*(i178*x24*x115 + i215*x61*x116 + i252*x98*x117) + x138 =E= -1; e28.. -0.00526315789473684*(i179*x25*x115 + i216*x62*x116 + i253*x99*x117) + x139 =E= -1; e29.. -0.00555555555555556*(i180*x26*x115 + i217*x63*x116 + i254*x100*x117) + x140 =E= -1; e30.. -0.0142857142857143*(i181*x27*x115 + i218*x64*x116 + i255*x101*x117) + x141 =E= -1; e31.. -0.0142857142857143*(i182*x28*x115 + i219*x65*x116 + i256*x102*x117) + x142 =E= -1; e32.. -0.025*(i183*x29*x115 + i220*x66*x116 + i257*x103*x117) + x143 =E= -1; e33.. -0.025*(i184*x30*x115 + i221*x67*x116 + i258*x104*x117) + x144 =E= -1; e34.. -0.025*(i185*x31*x115 + i222*x68*x116 + i259*x105*x117) + x145 =E= -1; e35.. -0.0333333333333333*(i186*x32*x115 + i223*x69*x116 + i260*x106*x117) + x146 =E= -1; e36.. -0.05*(i187*x33*x115 + i224*x70*x116 + i261*x107*x117) + x147 =E= -1; e37.. -0.05*(i188*x34*x115 + i225*x71*x116 + i262*x108*x117) + x148 =E= -1; e38.. -0.05*(i189*x35*x115 + i226*x72*x116 + i263*x109*x117) + x149 =E= -1; e39.. -0.1*(i190*x36*x115 + i227*x73*x116 + i264*x110*x117) + x150 =E= -1; e40.. -0.1*(i191*x37*x115 + i228*x74*x116 + i265*x111*x117) + x151 =E= -1; e41.. -0.1*(i192*x38*x115 + i229*x75*x116 + i266*x112*x117) + x152 =E= -1; e42.. -0.1*(i193*x39*x115 + i230*x76*x116 + i267*x113*x117) + x153 =E= -1; e43.. -0.1*(i194*x40*x115 + i231*x77*x116 + i268*x114*x117) + x154 =E= -1; e44.. x115 - 20*b155 =G= 0; e45.. x116 - 52.5*b156 =G= 0; e46.. x117 - 151.25*b157 =G= 0; e47.. x115 - 50*b155 =L= 0; e48.. x116 - 250*b156 =L= 0; e49.. x117 - 250*b157 =L= 0; * set non-default bounds x4.lo = 0.4; x4.up = 1; x5.lo = 0.4; x5.up = 1; x6.lo = 0.4; x6.up = 1; x7.lo = 0.4; x7.up = 1; x8.lo = 0.4; x8.up = 1; x9.lo = 0.4; x9.up = 1; x10.lo = 0.4; x10.up = 1; x11.lo = 0.4; x11.up = 1; x12.lo = 0.4; x12.up = 1; x13.lo = 0.4; x13.up = 1; x14.lo = 0.4; x14.up = 1; x15.lo = 0.4; x15.up = 1; x16.lo = 0.4; x16.up = 1; x17.lo = 0.4; x17.up = 1; x18.lo = 0.4; x18.up = 1; x19.lo = 0.4; x19.up = 1; x20.lo = 0.4; x20.up = 1; x21.lo = 0.4; x21.up = 1; x22.lo = 0.4; x22.up = 1; x23.lo = 0.4; x23.up = 1; x24.lo = 0.4; x24.up = 1; x25.lo = 0.4; x25.up = 1; x26.lo = 0.4; x26.up = 1; x27.lo = 0.4; x27.up = 1; x28.lo = 0.4; x28.up = 1; x29.lo = 0.4; x29.up = 1; x30.lo = 0.4; x30.up = 1; x31.lo = 0.4; x31.up = 1; x32.lo = 0.4; x32.up = 1; x33.lo = 0.4; x33.up = 1; x34.lo = 0.4; x34.up = 1; x35.lo = 0.4; x35.up = 1; x36.lo = 0.4; x36.up = 1; x37.lo = 0.4; x37.up = 1; x38.lo = 0.4; x38.up = 1; x39.lo = 0.4; x39.up = 1; x40.lo = 0.4; x40.up = 1; x41.lo = 0.4; x41.up = 1; x42.lo = 0.4; x42.up = 1; x43.lo = 0.4; x43.up = 1; x44.lo = 0.4; x44.up = 1; x45.lo = 0.4; x45.up = 1; x46.lo = 0.4; x46.up = 1; x47.lo = 0.4; x47.up = 1; x48.lo = 0.4; x48.up = 1; x49.lo = 0.4; x49.up = 1; x50.lo = 0.4; x50.up = 1; x51.lo = 0.4; x51.up = 1; x52.lo = 0.4; x52.up = 1; x53.lo = 0.4; x53.up = 1; x54.lo = 0.4; x54.up = 1; x55.lo = 0.4; x55.up = 1; x56.lo = 0.4; x56.up = 1; x57.lo = 0.4; x57.up = 1; x58.lo = 0.4; x58.up = 1; x59.lo = 0.4; x59.up = 1; x60.lo = 0.4; x60.up = 1; x61.lo = 0.4; x61.up = 1; x62.lo = 0.4; x62.up = 1; x63.lo = 0.4; x63.up = 1; x64.lo = 0.4; x64.up = 1; x65.lo = 0.4; x65.up = 1; x66.lo = 0.4; x66.up = 1; x67.lo = 0.4; x67.up = 1; x68.lo = 0.4; x68.up = 1; x69.lo = 0.4; x69.up = 1; x70.lo = 0.4; x70.up = 1; x71.lo = 0.4; x71.up = 1; x72.lo = 0.4; x72.up = 1; x73.lo = 0.4; x73.up = 1; x74.lo = 0.4; x74.up = 1; x75.lo = 0.4; x75.up = 1; x76.lo = 0.4; x76.up = 1; x77.lo = 0.4; x77.up = 1; x78.lo = 0.4; x78.up = 1; x79.lo = 0.4; x79.up = 1; x80.lo = 0.4; x80.up = 1; x81.lo = 0.4; x81.up = 1; x82.lo = 0.4; x82.up = 1; x83.lo = 0.4; x83.up = 1; x84.lo = 0.4; x84.up = 1; x85.lo = 0.4; x85.up = 1; x86.lo = 0.4; x86.up = 1; x87.lo = 0.4; x87.up = 1; x88.lo = 0.4; x88.up = 1; x89.lo = 0.4; x89.up = 1; x90.lo = 0.4; x90.up = 1; x91.lo = 0.4; x91.up = 1; x92.lo = 0.4; x92.up = 1; x93.lo = 0.4; x93.up = 1; x94.lo = 0.4; x94.up = 1; x95.lo = 0.4; x95.up = 1; x96.lo = 0.4; x96.up = 1; x97.lo = 0.4; x97.up = 1; x98.lo = 0.4; x98.up = 1; x99.lo = 0.4; x99.up = 1; x100.lo = 0.4; x100.up = 1; x101.lo = 0.4; x101.up = 1; x102.lo = 0.4; x102.up = 1; x103.lo = 0.4; x103.up = 1; x104.lo = 0.4; x104.up = 1; x105.lo = 0.4; x105.up = 1; x106.lo = 0.4; x106.up = 1; x107.lo = 0.4; x107.up = 1; x108.lo = 0.4; x108.up = 1; x109.lo = 0.4; x109.up = 1; x110.lo = 0.4; x110.up = 1; x111.lo = 0.4; x111.up = 1; x112.lo = 0.4; x112.up = 1; x113.lo = 0.4; x113.up = 1; x114.lo = 0.4; x114.up = 1; x115.lo = 20; x116.lo = 52.5; x117.lo = 151.25; x118.up = 1; x119.up = 1; x120.up = 1; x121.up = 1; x122.up = 1; x123.up = 1; x124.up = 1; x125.up = 1; x126.up = 1; x127.up = 1; x128.up = 1; x129.up = 1; x130.up = 1; x131.up = 1; x132.up = 1; x133.up = 1; x134.up = 1; x135.up = 1; x136.up = 1; x137.up = 1; x138.up = 1; x139.up = 1; x140.up = 1; x141.up = 1; x142.up = 1; x143.up = 1; x144.up = 1; x145.up = 1; x146.up = 1; x147.up = 1; x148.up = 1; x149.up = 1; x150.up = 1; x151.up = 1; x152.up = 1; x153.up = 1; x154.up = 1; i158.up = 28; i159.up = 28; i160.up = 28; i161.up = 28; i162.up = 28; i163.up = 28; i164.up = 28; i165.up = 28; i166.up = 27; i167.up = 27; i168.up = 2; i169.up = 27; i170.up = 22; i171.up = 22; i172.up = 22; i173.up = 17; i174.up = 12; i175.up = 7; i176.up = 2; i177.up = 2; i178.up = 2; i179.up = 28; i180.up = 28; i181.up = 17; i182.up = 17; i183.up = 10; i184.up = 10; i185.up = 10; i186.up = 7; i187.up = 5; i188.up = 5; i189.up = 5; i190.up = 2; i191.up = 2; i192.up = 2; i193.up = 2; i194.up = 2; i195.up = 28; i196.up = 28; i197.up = 28; i198.up = 28; i199.up = 28; i200.up = 28; i201.up = 28; i202.up = 13; i203.up = 10; i204.up = 10; i205.fx = 0; i206.up = 10; i207.up = 8; i208.up = 8; i209.up = 8; i210.up = 6; i211.up = 4; i212.up = 2; i213.fx = 0; i214.fx = 0; i215.fx = 0; i216.up = 18; i217.up = 17; i218.up = 6; i219.up = 6; i220.up = 3; i221.up = 3; i222.up = 3; i223.up = 2; i224.up = 1; i225.up = 1; i226.up = 1; i227.fx = 0; i228.fx = 0; i229.fx = 0; i230.fx = 0; i231.fx = 0; i232.up = 28; i233.up = 28; i234.up = 14; i235.up = 28; i236.up = 18; i237.up = 17; i238.up = 17; i239.up = 4; i240.up = 3; i241.up = 3; i242.fx = 0; i243.up = 3; i244.up = 2; i245.up = 2; i246.up = 2; i247.up = 2; i248.up = 1; i249.fx = 0; i250.fx = 0; i251.fx = 0; i252.fx = 0; i253.up = 6; i254.up = 5; i255.up = 2; i256.up = 2; i257.up = 1; i258.up = 1; i259.up = 1; i260.fx = 0; i261.fx = 0; i262.fx = 0; i263.fx = 0; i264.fx = 0; i265.fx = 0; i266.fx = 0; i267.fx = 0; i268.fx = 0; * set non-default levels x115.l = 99; x116.l = 99; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91