MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance kriging_peaks-full010
Gaussian process regression for the peaks functions using 10 datapoints. This is the full-space formulation where intermediate variables are defined by additional constraints.
| Formatsⓘ | ams gms mod nl osil py |
| Primal Bounds (infeas ≤ 1e-08)ⓘ | |
| Other points (infeas > 1e-08)ⓘ | |
| Dual Boundsⓘ | 0.29112078 (ANTIGONE) 0.29108221 (BARON) 0.29112068 (LINDO) 0.29111461 (SCIP) |
| Referencesⓘ | Schweidtmann, Artur M., Bongartz, Dominik, Grothe, Daniel, Kerkenhoff, Tim, Lin, Xiaopeng, Najman, Jaromil, and Mitsos, Alexander, Deterministic global optimization with Gaussian processes embedded, Mathematical Programming Computation, 13:3, 2021, 553-581. |
| Applicationⓘ | Kriging |
| Added to libraryⓘ | 11 Dec 2020 |
| Problem typeⓘ | NLP |
| #Variablesⓘ | 26 |
| #Binary Variablesⓘ | 0 |
| #Integer Variablesⓘ | 0 |
| #Nonlinear Variablesⓘ | 12 |
| #Nonlinear Binary Variablesⓘ | 0 |
| #Nonlinear Integer Variablesⓘ | 0 |
| Objective Senseⓘ | min |
| Objective typeⓘ | linear |
| Objective curvatureⓘ | linear |
| #Nonzeros in Objectiveⓘ | 1 |
| #Nonlinear Nonzeros in Objectiveⓘ | 0 |
| #Constraintsⓘ | 24 |
| #Linear Constraintsⓘ | 4 |
| #Quadratic Constraintsⓘ | 10 |
| #Polynomial Constraintsⓘ | 0 |
| #Signomial Constraintsⓘ | 0 |
| #General Nonlinear Constraintsⓘ | 10 |
| Operands in Gen. Nonlin. Functionsⓘ | exp mul sqrt |
| Constraints curvatureⓘ | indefinite |
| #Nonzeros in Jacobianⓘ | 67 |
| #Nonlinear Nonzeros in Jacobianⓘ | 30 |
| #Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 12 |
| #Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 12 |
| #Blocks in Hessian of Lagrangianⓘ | 12 |
| Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
| Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
| Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
| #Semicontinuitiesⓘ | 0 |
| #Nonlinear Semicontinuitiesⓘ | 0 |
| #SOS type 1ⓘ | 0 |
| #SOS type 2ⓘ | 0 |
| Minimal coefficientⓘ | 6.4807e-02 |
| Maximal coefficientⓘ | 6.4256e+01 |
| Infeasibility of initial pointⓘ | 54.01 |
| Sparsity Jacobianⓘ | ![]() |
| Sparsity Hessian of Lagrangianⓘ | ![]() |
$offlisting
*
* Equation counts
* Total E G L N X C B
* 25 25 0 0 0 0 0 0
*
* Variable counts
* x b i s1s s2s sc si
* Total cont binary integer sos1 sos2 scont sint
* 27 27 0 0 0 0 0 0
* FX 0
*
* Nonzero counts
* Total const NL DLL
* 69 39 30 0
*
* Solve m using NLP minimizing objvar;
Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
,x20,x21,x22,x23,x24,x25,x26,objvar;
Positive Variables x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20
,x21,x22,x23,x24;
Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
,e20,e21,e22,e23,e24,e25;
e1.. - x26 + objvar =E= 0;
e2.. 0.166666666666667*x1 - x3 =E= -0.5;
e3.. 0.166666666666667*x2 - x4 =E= -0.5;
e4.. 64.2558879895505*sqr(0.694030125231034 - x3) + 0.451453304154821*sqr(
0.095158202540104 - x4) - x5 =E= 0;
e5.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x5) + 1.66666666666667*x5)*
exp(-2.23606797749979*sqrt(x5)) - x6 =E= 0;
e6.. 64.2558879895505*sqr(0.768324435572052 - x3) + 0.451453304154821*sqr(
0.279169765904797 - x4) - x7 =E= 0;
e7.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x7) + 1.66666666666667*x7)*
exp(-2.23606797749979*sqrt(x7)) - x8 =E= 0;
e8.. 64.2558879895505*sqr(0.449417796221557 - x3) + 0.451453304154821*sqr(
0.690399166851636 - x4) - x9 =E= 0;
e9.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x9) + 1.66666666666667*x9)*
exp(-2.23606797749979*sqrt(x9)) - x10 =E= 0;
e10.. 64.2558879895505*sqr(0.835653234585859 - x3) + 0.451453304154821*sqr(
0.819274707641782 - x4) - x11 =E= 0;
e11.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x11) + 1.66666666666667*x11)
*exp(-2.23606797749979*sqrt(x11)) - x12 =E= 0;
e12.. 64.2558879895505*sqr(0.916115262788179 - x3) + 0.451453304154821*sqr(
0.417060019884486 - x4) - x13 =E= 0;
e13.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x13) + 1.66666666666667*x13)
*exp(-2.23606797749979*sqrt(x13)) - x14 =E= 0;
e14.. 64.2558879895505*sqr(0.175655940777394 - x3) + 0.451453304154821*sqr(
0.577517381141589 - x4) - x15 =E= 0;
e15.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x15) + 1.66666666666667*x15)
*exp(-2.23606797749979*sqrt(x15)) - x16 =E= 0;
e16.. 64.2558879895505*sqr(0.210585980433571 - x3) + 0.451453304154821*sqr(
0.162363431410791 - x4) - x17 =E= 0;
e17.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x17) + 1.66666666666667*x17)
*exp(-2.23606797749979*sqrt(x17)) - x18 =E= 0;
e18.. 64.2558879895505*sqr(0.379111099961924 - x3) + 0.451453304154821*sqr(
0.374896738086211 - x4) - x19 =E= 0;
e19.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x19) + 1.66666666666667*x19)
*exp(-2.23606797749979*sqrt(x19)) - x20 =E= 0;
e20.. 64.2558879895505*sqr(0.58269047049772 - x3) + 0.451453304154821*sqr(
0.958984274331446 - x4) - x21 =E= 0;
e21.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x21) + 1.66666666666667*x21)
*exp(-2.23606797749979*sqrt(x21)) - x22 =E= 0;
e22.. 64.2558879895505*sqr(0.064807191405694 - x3) + 0.451453304154821*sqr(
0.720400711043696 - x4) - x23 =E= 0;
e23.. 0.256658143048259*(1 + 2.23606797749979*sqrt(x23) + 1.66666666666667*x23)
*exp(-2.23606797749979*sqrt(x23)) - x24 =E= 0;
e24.. - 0.554050919391022*x6 - 0.182361458467212*x8 + 1.70198363249747*x10
- 0.15810145595015*x12 - 0.149505342468411*x14 - 0.88102258631443*x16
- 0.215467740313008*x18 + 0.85857179829172*x20 - 0.171283188932011*x22
- 0.218571179976833*x24 - x25 =E= 0;
e25.. 1.86360571672641*x25 - x26 =E= -0.727377686265491;
* set non-default bounds
x1.lo = -3; x1.up = 3;
x2.lo = -3; x2.up = 3;
x3.lo = -1; x3.up = 1;
x4.lo = -1; x4.up = 1;
x5.up = 10000000;
x6.up = 10000000;
x7.up = 10000000;
x8.up = 10000000;
x9.up = 10000000;
x10.up = 10000000;
x11.up = 10000000;
x12.up = 10000000;
x13.up = 10000000;
x14.up = 10000000;
x15.up = 10000000;
x16.up = 10000000;
x17.up = 10000000;
x18.up = 10000000;
x19.up = 10000000;
x20.up = 10000000;
x21.up = 10000000;
x22.up = 10000000;
x23.up = 10000000;
x24.up = 10000000;
x25.lo = -10000000; x25.up = 10000000;
x26.lo = -10000000; x26.up = 10000000;
Model m / all /;
m.limrow=0; m.limcol=0;
m.tolproj=0.0;
$if NOT '%gams.u1%' == '' $include '%gams.u1%'
$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;
Last updated: 2025-08-07 Git hash: e62cedfc

