MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance kriging_peaks-full050
Gaussian process regression for the peaks functions using 50 datapoints. This is the full-space formulation where intermediate variables are defined by additional constraints.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -1.32073930 (ANTIGONE) -1.15681375 (BARON) -1.15658991 (LINDO) -1.15660050 (SCIP) |
Referencesⓘ | Schweidtmann, Artur M., Bongartz, Dominik, Grothe, Daniel, Kerkenhoff, Tim, Lin, Xiaopeng, Najman, Jaromil, and Mitsos, Alexander, Deterministic global optimization with Gaussian processes embedded, Mathematical Programming Computation, 13:3, 2021, 553-581. |
Applicationⓘ | Kriging |
Added to libraryⓘ | 11 Dec 2020 |
Problem typeⓘ | NLP |
#Variablesⓘ | 106 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 52 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 104 |
#Linear Constraintsⓘ | 4 |
#Quadratic Constraintsⓘ | 50 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 50 |
Operands in Gen. Nonlin. Functionsⓘ | exp mul sqrt |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 307 |
#Nonlinear Nonzeros in Jacobianⓘ | 150 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 52 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 52 |
#Blocks in Hessian of Lagrangianⓘ | 52 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 4.9484e-04 |
Maximal coefficientⓘ | 6.3938e+01 |
Infeasibility of initial pointⓘ | 65.41 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 105 105 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 107 107 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 309 159 150 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103 ,x104,x105,x106,objvar; Positive Variables x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20 ,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37 ,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53,x54 ,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70,x71 ,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87,x88 ,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103 ,x104; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105; e1.. - x106 + objvar =E= 0; e2.. 0.166666666666667*x1 - x3 =E= -0.5; e3.. 0.166666666666667*x2 - x4 =E= -0.5; e4.. 63.938104949048*sqr(0.91444408088704 - x3) + 11.9516380997938*sqr( 0.999827877577323 - x4) - x5 =E= 0; e5.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x5) + 1.66666666666667*x5)* exp(-2.23606797749979*sqrt(x5)) - x6 =E= 0; e6.. 63.938104949048*sqr(0.512270639538623 - x3) + 11.9516380997938*sqr( 0.341832211664162 - x4) - x7 =E= 0; e7.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x7) + 1.66666666666667*x7)* exp(-2.23606797749979*sqrt(x7)) - x8 =E= 0; e8.. 63.938104949048*sqr(0.828588651321815 - x3) + 11.9516380997938*sqr( 0.922821824461503 - x4) - x9 =E= 0; e9.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x9) + 1.66666666666667*x9)* exp(-2.23606797749979*sqrt(x9)) - x10 =E= 0; e10.. 63.938104949048*sqr(0.196070004978241 - x3) + 11.9516380997938*sqr( 0.258795790737015 - x4) - x11 =E= 0; e11.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x11) + 1.66666666666667*x11) *exp(-2.23606797749979*sqrt(x11)) - x12 =E= 0; e12.. 63.938104949048*sqr(0.925574140459005 - x3) + 11.9516380997938*sqr( 0.759134777875101 - x4) - x13 =E= 0; e13.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x13) + 1.66666666666667*x13) *exp(-2.23606797749979*sqrt(x13)) - x14 =E= 0; e14.. 63.938104949048*sqr(0.544706424830881 - x3) + 11.9516380997938*sqr( 0.0714978839191896 - x4) - x15 =E= 0; e15.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x15) + 1.66666666666667*x15) *exp(-2.23606797749979*sqrt(x15)) - x16 =E= 0; e16.. 63.938104949048*sqr(0.648362902134195 - x3) + 11.9516380997938*sqr( 0.199809710635483 - x4) - x17 =E= 0; e17.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x17) + 1.66666666666667*x17) *exp(-2.23606797749979*sqrt(x17)) - x18 =E= 0; e18.. 63.938104949048*sqr(0.893120932447526 - x3) + 11.9516380997938*sqr( 0.767134170090178 - x4) - x19 =E= 0; e19.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x19) + 1.66666666666667*x19) *exp(-2.23606797749979*sqrt(x19)) - x20 =E= 0; e20.. 63.938104949048*sqr(0.779840229982808 - x3) + 11.9516380997938*sqr( 0.115228373952418 - x4) - x21 =E= 0; e21.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x21) + 1.66666666666667*x21) *exp(-2.23606797749979*sqrt(x21)) - x22 =E= 0; e22.. 63.938104949048*sqr(0.980244861711599 - x3) + 11.9516380997938*sqr( 0.232896066498765 - x4) - x23 =E= 0; e23.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x23) + 1.66666666666667*x23) *exp(-2.23606797749979*sqrt(x23)) - x24 =E= 0; e24.. 63.938104949048*sqr(0.171423093396044 - x3) + 11.9516380997938*sqr( 0.479648256287106 - x4) - x25 =E= 0; e25.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x25) + 1.66666666666667*x25) *exp(-2.23606797749979*sqrt(x25)) - x26 =E= 0; e26.. 63.938104949048*sqr(0.0442328283704769 - x3) + 11.9516380997938*sqr( 0.646012035209209 - x4) - x27 =E= 0; e27.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x27) + 1.66666666666667*x27) *exp(-2.23606797749979*sqrt(x27)) - x28 =E= 0; e28.. 63.938104949048*sqr(0.691411127164531 - x3) + 11.9516380997938*sqr( 0.949521423561418 - x4) - x29 =E= 0; e29.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x29) + 1.66666666666667*x29) *exp(-2.23606797749979*sqrt(x29)) - x30 =E= 0; e30.. 63.938104949048*sqr(0.307339086280815 - x3) + 11.9516380997938*sqr( 0.823718436988909 - x4) - x31 =E= 0; e31.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x31) + 1.66666666666667*x31) *exp(-2.23606797749979*sqrt(x31)) - x32 =E= 0; e32.. 63.938104949048*sqr(0.156987059593039 - x3) + 11.9516380997938*sqr( 0.704190234776601 - x4) - x33 =E= 0; e33.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x33) + 1.66666666666667*x33) *exp(-2.23606797749979*sqrt(x33)) - x34 =E= 0; e34.. 63.938104949048*sqr(0.714276281917298 - x3) + 11.9516380997938*sqr( 0.787100183039457 - x4) - x35 =E= 0; e35.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x35) + 1.66666666666667*x35) *exp(-2.23606797749979*sqrt(x35)) - x36 =E= 0; e36.. 63.938104949048*sqr(0.367402952149829 - x3) + 11.9516380997938*sqr( 0.0395596030436262 - x4) - x37 =E= 0; e37.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x37) + 1.66666666666667*x37) *exp(-2.23606797749979*sqrt(x37)) - x38 =E= 0; e38.. 63.938104949048*sqr(0.587231126187775 - x3) + 11.9516380997938*sqr( 0.579245001413374 - x4) - x39 =E= 0; e39.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x39) + 1.66666666666667*x39) *exp(-2.23606797749979*sqrt(x39)) - x40 =E= 0; e40.. 63.938104949048*sqr(0.329488378583342 - x3) + 11.9516380997938*sqr( 0.888756970308057 - x4) - x41 =E= 0; e41.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x41) + 1.66666666666667*x41) *exp(-2.23606797749979*sqrt(x41)) - x42 =E= 0; e42.. 63.938104949048*sqr(0.426454462097756 - x3) + 11.9516380997938*sqr( 0.442589666022276 - x4) - x43 =E= 0; e43.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x43) + 1.66666666666667*x43) *exp(-2.23606797749979*sqrt(x43)) - x44 =E= 0; e44.. 63.938104949048*sqr(0.618294064225034 - x3) + 11.9516380997938*sqr( 0.00770431754139585 - x4) - x45 =E= 0; e45.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x45) + 1.66666666666667*x45) *exp(-2.23606797749979*sqrt(x45)) - x46 =E= 0; e46.. 63.938104949048*sqr(0.287839839566682 - x3) + 11.9516380997938*sqr( 0.144827186434541 - x4) - x47 =E= 0; e47.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x47) + 1.66666666666667*x47) *exp(-2.23606797749979*sqrt(x47)) - x48 =E= 0; e48.. 63.938104949048*sqr(0.568950032842984 - x3) + 11.9516380997938*sqr( 0.604419102860498 - x4) - x49 =E= 0; e49.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x49) + 1.66666666666667*x49) *exp(-2.23606797749979*sqrt(x49)) - x50 =E= 0; e50.. 63.938104949048*sqr(0.404869181965135 - x3) + 11.9516380997938*sqr( 0.660090190214415 - x4) - x51 =E= 0; e51.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x51) + 1.66666666666667*x51) *exp(-2.23606797749979*sqrt(x51)) - x52 =E= 0; e52.. 63.938104949048*sqr(0.872708180136192 - x3) + 11.9516380997938*sqr( 0.632747129594836 - x4) - x53 =E= 0; e53.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x53) + 1.66666666666667*x53) *exp(-2.23606797749979*sqrt(x53)) - x54 =E= 0; e54.. 63.938104949048*sqr(0.968711755891586 - x3) + 11.9516380997938*sqr( 0.318643122915592 - x4) - x55 =E= 0; e55.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x55) + 1.66666666666667*x55) *exp(-2.23606797749979*sqrt(x55)) - x56 =E= 0; e56.. 63.938104949048*sqr(0.460753668532643 - x3) + 11.9516380997938*sqr( 0.539244831501377 - x4) - x57 =E= 0; e57.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x57) + 1.66666666666667*x57) *exp(-2.23606797749979*sqrt(x57)) - x58 =E= 0; e58.. 63.938104949048*sqr(0.72652385482879 - x3) + 11.9516380997938*sqr( 0.816356936855873 - x4) - x59 =E= 0; e59.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x59) + 1.66666666666667*x59) *exp(-2.23606797749979*sqrt(x59)) - x60 =E= 0; e60.. 63.938104949048*sqr(0.957248446547711 - x3) + 11.9516380997938*sqr( 0.408207398550875 - x4) - x61 =E= 0; e61.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x61) + 1.66666666666667*x61) *exp(-2.23606797749979*sqrt(x61)) - x62 =E= 0; e62.. 63.938104949048*sqr(0.794750682614849 - x3) + 11.9516380997938*sqr( 0.084497120889644 - x4) - x63 =E= 0; e63.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x63) + 1.66666666666667*x63) *exp(-2.23606797749979*sqrt(x63)) - x64 =E= 0; e64.. 63.938104949048*sqr(0.227847372253769 - x3) + 11.9516380997938*sqr( 0.681203760209944 - x4) - x65 =E= 0; e65.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x65) + 1.66666666666667*x65) *exp(-2.23606797749979*sqrt(x65)) - x66 =E= 0; e66.. 63.938104949048*sqr(0.672167890972669 - x3) + 11.9516380997938*sqr( 0.908892360525134 - x4) - x67 =E= 0; e67.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x67) + 1.66666666666667*x67) *exp(-2.23606797749979*sqrt(x67)) - x68 =E= 0; e68.. 63.938104949048*sqr(0.389240322657806 - x3) + 11.9516380997938*sqr( 0.855065265920299 - x4) - x69 =E= 0; e69.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x69) + 1.66666666666667*x69) *exp(-2.23606797749979*sqrt(x69)) - x70 =E= 0; e70.. 63.938104949048*sqr(0.250419824463881 - x3) + 11.9516380997938*sqr( 0.123958515062189 - x4) - x71 =E= 0; e71.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x71) + 1.66666666666667*x71) *exp(-2.23606797749979*sqrt(x71)) - x72 =E= 0; e72.. 63.938104949048*sqr(0.751338884270706 - x3) + 11.9516380997938*sqr( 0.168231540605081 - x4) - x73 =E= 0; e73.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x73) + 1.66666666666667*x73) *exp(-2.23606797749979*sqrt(x73)) - x74 =E= 0; e74.. 63.938104949048*sqr(0.442625854866514 - x3) + 11.9516380997938*sqr( 0.485359903912025 - x4) - x75 =E= 0; e75.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x75) + 1.66666666666667*x75) *exp(-2.23606797749979*sqrt(x75)) - x76 =E= 0; e76.. 63.938104949048*sqr(0.630060774132016 - x3) + 11.9516380997938*sqr( 0.865973040158068 - x4) - x77 =E= 0; e77.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x77) + 1.66666666666667*x77) *exp(-2.23606797749979*sqrt(x77)) - x78 =E= 0; e78.. 63.938104949048*sqr(0.201567418081754 - x3) + 11.9516380997938*sqr( 0.0541844010231221 - x4) - x79 =E= 0; e79.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x79) + 1.66666666666667*x79) *exp(-2.23606797749979*sqrt(x79)) - x80 =E= 0; e80.. 63.938104949048*sqr(0.0688002798156933 - x3) + 11.9516380997938*sqr( 0.729069908135606 - x4) - x81 =E= 0; e81.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x81) + 1.66666666666667*x81) *exp(-2.23606797749979*sqrt(x81)) - x82 =E= 0; e82.. 63.938104949048*sqr(0.525665882763195 - x3) + 11.9516380997938*sqr( 0.293372576581166 - x4) - x83 =E= 0; e83.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x83) + 1.66666666666667*x83) *exp(-2.23606797749979*sqrt(x83)) - x84 =E= 0; e84.. 63.938104949048*sqr(0.814666152229046 - x3) + 11.9516380997938*sqr( 0.439994250606541 - x4) - x85 =E= 0; e85.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x85) + 1.66666666666667*x85) *exp(-2.23606797749979*sqrt(x85)) - x86 =E= 0; e86.. 63.938104949048*sqr(0.000494837260784549 - x3) + 11.9516380997938*sqr( 0.329105652324109 - x4) - x87 =E= 0; e87.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x87) + 1.66666666666667*x87) *exp(-2.23606797749979*sqrt(x87)) - x88 =E= 0; e88.. 63.938104949048*sqr(0.346107221824958 - x3) + 11.9516380997938*sqr( 0.399699261152344 - x4) - x89 =E= 0; e89.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x89) + 1.66666666666667*x89) *exp(-2.23606797749979*sqrt(x89)) - x90 =E= 0; e90.. 63.938104949048*sqr(0.116587170646063 - x3) + 11.9516380997938*sqr( 0.584598585997641 - x4) - x91 =E= 0; e91.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x91) + 1.66666666666667*x91) *exp(-2.23606797749979*sqrt(x91)) - x92 =E= 0; e92.. 63.938104949048*sqr(0.0981435670313116 - x3) + 11.9516380997938*sqr( 0.203823777512949 - x4) - x93 =E= 0; e93.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x93) + 1.66666666666667*x93) *exp(-2.23606797749979*sqrt(x93)) - x94 =E= 0; e94.. 63.938104949048*sqr(0.484116247882851 - x3) + 11.9516380997938*sqr( 0.968040087195413 - x4) - x95 =E= 0; e95.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x95) + 1.66666666666667*x95) *exp(-2.23606797749979*sqrt(x95)) - x96 =E= 0; e96.. 63.938104949048*sqr(0.0258195777506217 - x3) + 11.9516380997938*sqr( 0.364843552111112 - x4) - x97 =E= 0; e97.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x97) + 1.66666666666667*x97) *exp(-2.23606797749979*sqrt(x97)) - x98 =E= 0; e98.. 63.938104949048*sqr(0.847199435240466 - x3) + 11.9516380997938*sqr( 0.514365810567645 - x4) - x99 =E= 0; e99.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x99) + 1.66666666666667*x99) *exp(-2.23606797749979*sqrt(x99)) - x100 =E= 0; e100.. 63.938104949048*sqr(0.278722256637232 - x3) + 11.9516380997938*sqr( 0.270454503788408 - x4) - x101 =E= 0; e101.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x101) + 1.66666666666667* x101)*exp(-2.23606797749979*sqrt(x101)) - x102 =E= 0; e102.. 63.938104949048*sqr(0.129959773843819 - x3) + 11.9516380997938*sqr( 0.558945606997871 - x4) - x103 =E= 0; e103.. 0.415803483145436*(1 + 2.23606797749979*sqrt(x103) + 1.66666666666667* x103)*exp(-2.23606797749979*sqrt(x103)) - x104 =E= 0; e104.. - 0.123076996278144*x6 - 0.166421086062989*x8 - 0.247803126196198*x10 + 0.102086768548506*x12 - 0.152070272173613*x14 - 0.31796162836734*x16 - 1.74464626473608*x18 - 0.173141983185604*x20 - 0.0253715466673997*x22 - 0.132028059968171*x24 - 0.858588122349194*x26 + 0.0240133726821279*x28 - 0.391385083608166*x30 + 0.445633363954121*x32 - 0.0491516256763154*x34 + 0.645620041306043*x36 - 0.179138859785582*x38 + 0.0488906047534055*x40 - 0.0607138296143051*x42 + 1.59105001805531*x44 + 0.388963397056983*x46 - 0.254558018663405*x48 + 0.00421538096394381*x50 + 0.469095859503578*x52 - 0.0621621438235275*x54 - 0.138495991869403*x56 - 0.0182879338983809*x58 + 0.263948780641845*x60 - 0.133915556636388*x62 - 0.00545727925585648*x64 - 0.612349070958348*x66 - 0.0885690213152005*x68 + 1.24538427696921*x70 - 0.100410048120177*x72 - 0.18814890123585*x74 + 0.806971033783215*x76 + 1.00895893257056*x78 - 0.0590064161050039*x80 + 0.0388998578796231*x82 - 2.69806306452684*x84 + 0.840699249061092*x86 - 0.0377634067064712*x88 + 0.622118304461606*x90 - 0.150694157880986*x92 + 0.0185321439616882*x94 - 0.264551856159385*x96 + 0.000749397135734776*x98 + 0.417930913778528*x100 + 0.155111489695813*x102 - 0.30231026780197*x104 - x105 =E= 0; e105.. 1.28655551917808*x105 - x106 =E= -0.270964000255915; * set non-default bounds x1.lo = -3; x1.up = 3; x2.lo = -3; x2.up = 3; x3.lo = -1; x3.up = 1; x4.lo = -1; x4.up = 1; x5.up = 10000000; x6.up = 10000000; x7.up = 10000000; x8.up = 10000000; x9.up = 10000000; x10.up = 10000000; x11.up = 10000000; x12.up = 10000000; x13.up = 10000000; x14.up = 10000000; x15.up = 10000000; x16.up = 10000000; x17.up = 10000000; x18.up = 10000000; x19.up = 10000000; x20.up = 10000000; x21.up = 10000000; x22.up = 10000000; x23.up = 10000000; x24.up = 10000000; x25.up = 10000000; x26.up = 10000000; x27.up = 10000000; x28.up = 10000000; x29.up = 10000000; x30.up = 10000000; x31.up = 10000000; x32.up = 10000000; x33.up = 10000000; x34.up = 10000000; x35.up = 10000000; x36.up = 10000000; x37.up = 10000000; x38.up = 10000000; x39.up = 10000000; x40.up = 10000000; x41.up = 10000000; x42.up = 10000000; x43.up = 10000000; x44.up = 10000000; x45.up = 10000000; x46.up = 10000000; x47.up = 10000000; x48.up = 10000000; x49.up = 10000000; x50.up = 10000000; x51.up = 10000000; x52.up = 10000000; x53.up = 10000000; x54.up = 10000000; x55.up = 10000000; x56.up = 10000000; x57.up = 10000000; x58.up = 10000000; x59.up = 10000000; x60.up = 10000000; x61.up = 10000000; x62.up = 10000000; x63.up = 10000000; x64.up = 10000000; x65.up = 10000000; x66.up = 10000000; x67.up = 10000000; x68.up = 10000000; x69.up = 10000000; x70.up = 10000000; x71.up = 10000000; x72.up = 10000000; x73.up = 10000000; x74.up = 10000000; x75.up = 10000000; x76.up = 10000000; x77.up = 10000000; x78.up = 10000000; x79.up = 10000000; x80.up = 10000000; x81.up = 10000000; x82.up = 10000000; x83.up = 10000000; x84.up = 10000000; x85.up = 10000000; x86.up = 10000000; x87.up = 10000000; x88.up = 10000000; x89.up = 10000000; x90.up = 10000000; x91.up = 10000000; x92.up = 10000000; x93.up = 10000000; x94.up = 10000000; x95.up = 10000000; x96.up = 10000000; x97.up = 10000000; x98.up = 10000000; x99.up = 10000000; x100.up = 10000000; x101.up = 10000000; x102.up = 10000000; x103.up = 10000000; x104.up = 10000000; x105.lo = -10000000; x105.up = 10000000; x106.lo = -10000000; x106.up = 10000000; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91