MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance like

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
1138.41056400 p1 ( gdx sol )
(infeas: 2e-15)
1092.02548900 p2 ( gdx sol )
(infeas: 0)
1074.44762300 p3 ( gdx sol )
(infeas: 0)
1056.69187200 p4 ( gdx sol )
(infeas: 0)
-160.62430510 p5 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
-24643.90415000 (COUENNE)
-117056.56720000 (LINDO)
References Bracken, Jerome and McCormick, Garth P, Chapter 8.5. In Bracken, Jerome and McCormick, Garth P, Selected Applications of Nonlinear Programming, John Wiley and Sons, New York, 1968, 90-92.
Source GAMS Model Library model like
Application Statistics
Added to library 31 Jul 2001
Problem type NLP
#Variables 9
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 9
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type nonlinear
Objective curvature unknown
#Nonzeros in Objective 9
#Nonlinear Nonzeros in Objective 9
#Constraints 3
#Linear Constraints 3
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions div exp log mul sqr
Constraints curvature linear
#Nonzeros in Jacobian 7
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 81
#Nonzeros in Diagonal of Hessian of Lagrangian 9
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 9
Maximal blocksize in Hessian of Lagrangian 9
Average blocksize in Hessian of Lagrangian 9.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 3.9894e-01
Maximal coefficient 2.6000e+02
Infeasibility of initial point 1.11e-15
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          4        2        2        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         10       10        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         17        8        9        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,objvar;

Positive Variables  x4,x5,x6,x7,x8,x9;

Equations  e1,e2,e3,e4;


e1.. -(log(0.398942448887604*(x1/x7*exp(-0.5*sqr((95 - x4)/x7)) + x2/x8*exp(-
     0.5*sqr((95 - x5)/x8)) + x3/x9*exp(-0.5*sqr((95 - x6)/x9)))) + log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((105 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((105 - x5)/x8)) + x3/x9*exp(-0.5*sqr((105 - x6)/x9)))) + 4*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((110 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((110 - x5)/x8)) + x3/x9*exp(-0.5*sqr((110 - x6)/x9)))) + 4*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((115 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((115 - x5)/x8)) + x3/x9*exp(-0.5*sqr((115 - x6)/x9)))) + 15*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((120 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((120 - x5)/x8)) + x3/x9*exp(-0.5*sqr((120 - x6)/x9)))) + 15*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((125 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((125 - x5)/x8)) + x3/x9*exp(-0.5*sqr((125 - x6)/x9)))) + 15*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((130 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((130 - x5)/x8)) + x3/x9*exp(-0.5*sqr((130 - x6)/x9)))) + 13*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((135 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((135 - x5)/x8)) + x3/x9*exp(-0.5*sqr((135 - x6)/x9)))) + 21*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((140 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((140 - x5)/x8)) + x3/x9*exp(-0.5*sqr((140 - x6)/x9)))) + 12*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((145 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((145 - x5)/x8)) + x3/x9*exp(-0.5*sqr((145 - x6)/x9)))) + 17*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((150 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((150 - x5)/x8)) + x3/x9*exp(-0.5*sqr((150 - x6)/x9)))) + 4*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((155 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((155 - x5)/x8)) + x3/x9*exp(-0.5*sqr((155 - x6)/x9)))) + 20*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((160 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((160 - x5)/x8)) + x3/x9*exp(-0.5*sqr((160 - x6)/x9)))) + 8*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((165 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((165 - x5)/x8)) + x3/x9*exp(-0.5*sqr((165 - x6)/x9)))) + 17*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((170 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((170 - x5)/x8)) + x3/x9*exp(-0.5*sqr((170 - x6)/x9)))) + 8*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((175 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((175 - x5)/x8)) + x3/x9*exp(-0.5*sqr((175 - x6)/x9)))) + 6*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((180 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((180 - x5)/x8)) + x3/x9*exp(-0.5*sqr((180 - x6)/x9)))) + 6*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((185 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((185 - x5)/x8)) + x3/x9*exp(-0.5*sqr((185 - x6)/x9)))) + 7*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((190 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((190 - x5)/x8)) + x3/x9*exp(-0.5*sqr((190 - x6)/x9)))) + 4*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((195 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((195 - x5)/x8)) + x3/x9*exp(-0.5*sqr((195 - x6)/x9)))) + 3*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((200 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((200 - x5)/x8)) + x3/x9*exp(-0.5*sqr((200 - x6)/x9)))) + 3*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((205 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((205 - x5)/x8)) + x3/x9*exp(-0.5*sqr((205 - x6)/x9)))) + 8*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((210 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((210 - x5)/x8)) + x3/x9*exp(-0.5*sqr((210 - x6)/x9)))) + log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((215 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((215 - x5)/x8)) + x3/x9*exp(-0.5*sqr((215 - x6)/x9)))) + 6*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((220 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((220 - x5)/x8)) + x3/x9*exp(-0.5*sqr((220 - x6)/x9)))) + 5*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((230 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((230 - x5)/x8)) + x3/x9*exp(-0.5*sqr((230 - x6)/x9)))) + log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((235 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((235 - x5)/x8)) + x3/x9*exp(-0.5*sqr((235 - x6)/x9)))) + 7*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((240 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((240 - x5)/x8)) + x3/x9*exp(-0.5*sqr((240 - x6)/x9)))) + log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((245 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((245 - x5)/x8)) + x3/x9*exp(-0.5*sqr((245 - x6)/x9)))) + 2*log(
     0.398942448887604*(x1/x7*exp(-0.5*sqr((260 - x4)/x7)) + x2/x8*exp(-0.5*
     sqr((260 - x5)/x8)) + x3/x9*exp(-0.5*sqr((260 - x6)/x9))))) - objvar =E= 0
     ;

e2..    x1 + x2 + x3 =E= 1;

e3..  - x4 + x5 =G= 0;

e4..  - x5 + x6 =G= 0;

* set non-default bounds
x1.lo = 0.1;
x2.lo = 0.1;
x3.lo = 0.1;

* set non-default levels
x1.l = 0.333333333333333;
x2.l = 0.333333333333333;
x3.l = 0.333333333333333;
x4.l = 130;
x5.l = 160;
x6.l = 190;
x7.l = 15;
x8.l = 15;
x9.l = 15;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0