MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance mathopt3
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 0.00000000 (COUENNE) 0.00000000 (LINDO) 0.00000000 (SCIP) |
Referencesⓘ | Mathematica, MathOptimizer - An Advanced Modeling and Optimization System for Mathematica Users. Pinter, J D, Global Optimization in Action - Continuous and Lipschitz Optimization: Algorithms, Implementations, and Applications, Kluwer Acadameic Publishers, 1996. Pinter, J D, Computational Global Optimization in Nonlinear Systems - An Interactive Tutorial, Lionheart Publishing, Atlanta, GA, 2001. |
Sourceⓘ | GAMS Model Library model mathopt3 |
Applicationⓘ | Test Problem |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 6 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 6 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | nonconcave |
#Nonzeros in Objectiveⓘ | 6 |
#Nonlinear Nonzeros in Objectiveⓘ | 6 |
#Constraintsⓘ | 7 |
#Linear Constraintsⓘ | 3 |
#Quadratic Constraintsⓘ | 1 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 3 |
Operands in Gen. Nonlin. Functionsⓘ | cos mul sin sqr |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 36 |
#Nonlinear Nonzeros in Jacobianⓘ | 18 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 36 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 6 |
Maximal blocksize in Hessian of Lagrangianⓘ | 6 |
Average blocksize in Hessian of Lagrangianⓘ | 6.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 1.0000e+01 |
Infeasibility of initial pointⓘ | 1089 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 8 5 0 3 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 7 7 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 43 19 24 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,objvar; Equations e1,e2,e3,e4,e5,e6,e7,e8; e1.. -(sqr(x1 + x2) + sqr(x3 - x5) + sqr(x6 - x4) + 2*sqr(x1 + x3 - x4) + sqr( x2 - x1 + x3 - x4) + 10*sqr(sin(x1 + x5 - x6))) + objvar =E= 0; e2.. sqr(x1) - sin(x2) - x4 + x5 + x6 =E= 0; e3.. x1*x3 - x2*x4*x1 - sin((-x1) - x3 + x6) - x5 =E= 0; e4.. x2*x6*cos(x5) - sin(x3*x4) + x2 - x5 =E= 0; e5.. x1*x2 - sqr(x3) - x4*x5 - sqr(x6) =E= 0; e6.. 2*x1 + 5*x2 + x3 + x4 =L= 1; e7.. 3*x1 - 2*x2 + x3 - 4*x4 =L= 0; e8.. x1 + x2 + x3 + x4 + x5 + x6 =L= 2; * set non-default levels x1.l = 10; x2.l = -10; x3.l = 10; x4.l = 10; x5.l = 10; x6.l = -10; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91