MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance maxmin
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -1.09071382 (ANTIGONE) -0.91659596 (BARON) -1.04446594 (COUENNE) -0.81568286 (LINDO) -0.49349301 (SCIP) |
Referencesⓘ | Stinstra, E, den Hertog, D, Stehouwer, P, and Vestjens, A, Constrained Maximin Designs for Computer Experiments, Technometrics, 45:4, 2003, 340-346. Pinter, J D, LGO - A Model Development System for Continuous Global Optimization, User's Guide, Pinter Consulting Services, Halifax, NS, Canada, Revised edition, 2003. |
Sourceⓘ | GAMS Model Library model maxmin |
Applicationⓘ | Geometry |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 27 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 26 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 78 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 78 |
Operands in Gen. Nonlin. Functionsⓘ | sqr sqrt |
Constraints curvatureⓘ | nonconvex |
#Nonzeros in Jacobianⓘ | 390 |
#Nonlinear Nonzeros in Jacobianⓘ | 312 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 676 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 26 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 26 |
Maximal blocksize in Hessian of Lagrangianⓘ | 26 |
Average blocksize in Hessian of Lagrangianⓘ | 26.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 1.0000e+00 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 78 0 0 78 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 27 27 0 0 0 0 0 0 * FX 2 * * Nonzero counts * Total const NL DLL * 390 78 312 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,objvar; Positive Variables x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78; e1.. -sqrt(sqr(x3 - x1) + sqr(x4 - x2)) - objvar =L= 0; e2.. -sqrt(sqr(x5 - x1) + sqr(x6 - x2)) - objvar =L= 0; e3.. -sqrt(sqr(x5 - x3) + sqr(x6 - x4)) - objvar =L= 0; e4.. -sqrt(sqr(x7 - x1) + sqr(x8 - x2)) - objvar =L= 0; e5.. -sqrt(sqr(x7 - x3) + sqr(x8 - x4)) - objvar =L= 0; e6.. -sqrt(sqr(x7 - x5) + sqr(x8 - x6)) - objvar =L= 0; e7.. -sqrt(sqr(x9 - x1) + sqr(x10 - x2)) - objvar =L= 0; e8.. -sqrt(sqr(x9 - x3) + sqr(x10 - x4)) - objvar =L= 0; e9.. -sqrt(sqr(x9 - x5) + sqr(x10 - x6)) - objvar =L= 0; e10.. -sqrt(sqr(x9 - x7) + sqr(x10 - x8)) - objvar =L= 0; e11.. -sqrt(sqr(x11 - x1) + sqr(x12 - x2)) - objvar =L= 0; e12.. -sqrt(sqr(x11 - x3) + sqr(x12 - x4)) - objvar =L= 0; e13.. -sqrt(sqr(x11 - x5) + sqr(x12 - x6)) - objvar =L= 0; e14.. -sqrt(sqr(x11 - x7) + sqr(x12 - x8)) - objvar =L= 0; e15.. -sqrt(sqr(x11 - x9) + sqr(x12 - x10)) - objvar =L= 0; e16.. -sqrt(sqr(x13 - x1) + sqr(x14 - x2)) - objvar =L= 0; e17.. -sqrt(sqr(x13 - x3) + sqr(x14 - x4)) - objvar =L= 0; e18.. -sqrt(sqr(x13 - x5) + sqr(x14 - x6)) - objvar =L= 0; e19.. -sqrt(sqr(x13 - x7) + sqr(x14 - x8)) - objvar =L= 0; e20.. -sqrt(sqr(x13 - x9) + sqr(x14 - x10)) - objvar =L= 0; e21.. -sqrt(sqr(x13 - x11) + sqr(x14 - x12)) - objvar =L= 0; e22.. -sqrt(sqr(x15 - x1) + sqr(x16 - x2)) - objvar =L= 0; e23.. -sqrt(sqr(x15 - x3) + sqr(x16 - x4)) - objvar =L= 0; e24.. -sqrt(sqr(x15 - x5) + sqr(x16 - x6)) - objvar =L= 0; e25.. -sqrt(sqr(x15 - x7) + sqr(x16 - x8)) - objvar =L= 0; e26.. -sqrt(sqr(x15 - x9) + sqr(x16 - x10)) - objvar =L= 0; e27.. -sqrt(sqr(x15 - x11) + sqr(x16 - x12)) - objvar =L= 0; e28.. -sqrt(sqr(x15 - x13) + sqr(x16 - x14)) - objvar =L= 0; e29.. -sqrt(sqr(x17 - x1) + sqr(x18 - x2)) - objvar =L= 0; e30.. -sqrt(sqr(x17 - x3) + sqr(x18 - x4)) - objvar =L= 0; e31.. -sqrt(sqr(x17 - x5) + sqr(x18 - x6)) - objvar =L= 0; e32.. -sqrt(sqr(x17 - x7) + sqr(x18 - x8)) - objvar =L= 0; e33.. -sqrt(sqr(x17 - x9) + sqr(x18 - x10)) - objvar =L= 0; e34.. -sqrt(sqr(x17 - x11) + sqr(x18 - x12)) - objvar =L= 0; e35.. -sqrt(sqr(x17 - x13) + sqr(x18 - x14)) - objvar =L= 0; e36.. -sqrt(sqr(x17 - x15) + sqr(x18 - x16)) - objvar =L= 0; e37.. -sqrt(sqr(x19 - x1) + sqr(x20 - x2)) - objvar =L= 0; e38.. -sqrt(sqr(x19 - x3) + sqr(x20 - x4)) - objvar =L= 0; e39.. -sqrt(sqr(x19 - x5) + sqr(x20 - x6)) - objvar =L= 0; e40.. -sqrt(sqr(x19 - x7) + sqr(x20 - x8)) - objvar =L= 0; e41.. -sqrt(sqr(x19 - x9) + sqr(x20 - x10)) - objvar =L= 0; e42.. -sqrt(sqr(x19 - x11) + sqr(x20 - x12)) - objvar =L= 0; e43.. -sqrt(sqr(x19 - x13) + sqr(x20 - x14)) - objvar =L= 0; e44.. -sqrt(sqr(x19 - x15) + sqr(x20 - x16)) - objvar =L= 0; e45.. -sqrt(sqr(x19 - x17) + sqr(x20 - x18)) - objvar =L= 0; e46.. -sqrt(sqr(x21 - x1) + sqr(x22 - x2)) - objvar =L= 0; e47.. -sqrt(sqr(x21 - x3) + sqr(x22 - x4)) - objvar =L= 0; e48.. -sqrt(sqr(x21 - x5) + sqr(x22 - x6)) - objvar =L= 0; e49.. -sqrt(sqr(x21 - x7) + sqr(x22 - x8)) - objvar =L= 0; e50.. -sqrt(sqr(x21 - x9) + sqr(x22 - x10)) - objvar =L= 0; e51.. -sqrt(sqr(x21 - x11) + sqr(x22 - x12)) - objvar =L= 0; e52.. -sqrt(sqr(x21 - x13) + sqr(x22 - x14)) - objvar =L= 0; e53.. -sqrt(sqr(x21 - x15) + sqr(x22 - x16)) - objvar =L= 0; e54.. -sqrt(sqr(x21 - x17) + sqr(x22 - x18)) - objvar =L= 0; e55.. -sqrt(sqr(x21 - x19) + sqr(x22 - x20)) - objvar =L= 0; e56.. -sqrt(sqr(x23 - x1) + sqr(x24 - x2)) - objvar =L= 0; e57.. -sqrt(sqr(x23 - x3) + sqr(x24 - x4)) - objvar =L= 0; e58.. -sqrt(sqr(x23 - x5) + sqr(x24 - x6)) - objvar =L= 0; e59.. -sqrt(sqr(x23 - x7) + sqr(x24 - x8)) - objvar =L= 0; e60.. -sqrt(sqr(x23 - x9) + sqr(x24 - x10)) - objvar =L= 0; e61.. -sqrt(sqr(x23 - x11) + sqr(x24 - x12)) - objvar =L= 0; e62.. -sqrt(sqr(x23 - x13) + sqr(x24 - x14)) - objvar =L= 0; e63.. -sqrt(sqr(x23 - x15) + sqr(x24 - x16)) - objvar =L= 0; e64.. -sqrt(sqr(x23 - x17) + sqr(x24 - x18)) - objvar =L= 0; e65.. -sqrt(sqr(x23 - x19) + sqr(x24 - x20)) - objvar =L= 0; e66.. -sqrt(sqr(x23 - x21) + sqr(x24 - x22)) - objvar =L= 0; e67.. -sqrt(sqr(x25 - x1) + sqr(x26 - x2)) - objvar =L= 0; e68.. -sqrt(sqr(x25 - x3) + sqr(x26 - x4)) - objvar =L= 0; e69.. -sqrt(sqr(x25 - x5) + sqr(x26 - x6)) - objvar =L= 0; e70.. -sqrt(sqr(x25 - x7) + sqr(x26 - x8)) - objvar =L= 0; e71.. -sqrt(sqr(x25 - x9) + sqr(x26 - x10)) - objvar =L= 0; e72.. -sqrt(sqr(x25 - x11) + sqr(x26 - x12)) - objvar =L= 0; e73.. -sqrt(sqr(x25 - x13) + sqr(x26 - x14)) - objvar =L= 0; e74.. -sqrt(sqr(x25 - x15) + sqr(x26 - x16)) - objvar =L= 0; e75.. -sqrt(sqr(x25 - x17) + sqr(x26 - x18)) - objvar =L= 0; e76.. -sqrt(sqr(x25 - x19) + sqr(x26 - x20)) - objvar =L= 0; e77.. -sqrt(sqr(x25 - x21) + sqr(x26 - x22)) - objvar =L= 0; e78.. -sqrt(sqr(x25 - x23) + sqr(x26 - x24)) - objvar =L= 0; * set non-default bounds x1.fx = 0; x2.fx = 0; x3.up = 1; x4.up = 1; x5.up = 1; x6.up = 1; x7.up = 1; x8.up = 1; x9.up = 1; x10.up = 1; x11.up = 1; x12.up = 1; x13.up = 1; x14.up = 1; x15.up = 1; x16.up = 1; x17.up = 1; x18.up = 1; x19.up = 1; x20.up = 1; x21.up = 1; x22.up = 1; x23.up = 1; x24.up = 1; x25.up = 1; x26.up = 1; * set non-default levels x3.l = 0.550375356; x4.l = 0.301137904; x5.l = 0.292212117; x6.l = 0.224052867; x7.l = 0.349830504; x8.l = 0.856270347; x9.l = 0.067113723; x10.l = 0.500210669; x11.l = 0.998117627; x12.l = 0.578733378; x13.l = 0.991133039; x14.l = 0.762250467; x15.l = 0.130692483; x16.l = 0.639718759; x17.l = 0.159517864; x18.l = 0.250080533; x19.l = 0.668928609; x20.l = 0.435356381; x21.l = 0.359700266; x22.l = 0.351441368; x23.l = 0.13149159; x24.l = 0.150101788; x25.l = 0.58911365; x26.l = 0.830892812; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91