MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance mhw4d

Formats ams gms mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
0.02931083 p1 ( gdx sol )
(infeas: 9e-16)
Other points (infeas > 1e-08)  
Dual Bounds
0.02931083 (COUENNE)
0.02931083 (LINDO)
0.02930981 (SCIP)
References Wright, M H, Numerical Methods for Nonlinearly Constraint Optimization, PhD thesis, Stanford University, 1976.
Source GAMS Model Library model mhw4d
Application Test Problem
Added to library 31 Jul 2001
Problem type NLP
#Variables 5
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 5
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type polynomial
Objective curvature indefinite
#Nonzeros in Objective 5
#Nonlinear Nonzeros in Objective 5
#Constraints 3
#Linear Constraints 0
#Quadratic Constraints 2
#Polynomial Constraints 1
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 8
#Nonlinear Nonzeros in Jacobian 5
#Nonzeros in (Upper-Left) Hessian of Lagrangian 15
#Nonzeros in Diagonal of Hessian of Lagrangian 5
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 5
Maximal blocksize in Hessian of Lagrangian 5
Average blocksize in Hessian of Lagrangian 5.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 4.0000e+00
Infeasibility of initial point 2.243
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          4        4        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          6        6        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         14        4       10        0
*
*  Solve m using NLP minimizing objvar;


Variables  objvar,x2,x3,x4,x5,x6;

Equations  e1,e2,e3,e4;


e1.. -(sqr((-1) + x2) + sqr(x2 - x3) + POWER(x3 - x4,3) + POWER(x4 - x5,4) + 
     POWER(x5 - x6,4)) + objvar =E= 0;

e2.. sqr(x3) + POWER(x4,3) + x2 =E= 6.24264068711929;

e3.. -sqr(x4) + x3 + x5 =E= 0.82842712474619;

e4.. x2*x6 =E= 2;

* set non-default levels
x2.l = -1;
x3.l = 2;
x4.l = 1;
x5.l = -2;
x6.l = -2;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0