MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance nemhaus

Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
31.00000000 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
31.00000000 (ANTIGONE)
31.00000000 (BARON)
31.00000000 (COUENNE)
31.00000000 (CPLEX)
31.00000000 (LINDO)
31.00000000 (SCIP)
References Carlson, R C and Nemhauser, G L, Scheduling to Minimize Interaction Cost, Operations Research, 14:1, 1966, 52-58.
Source GAMS Model Library model nemhaus
Application Job Scheduling
Added to library 31 Jul 2001
Problem type QP
#Variables 5
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 5
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type quadratic
Objective curvature indefinite
#Nonzeros in Objective 5
#Nonlinear Nonzeros in Objective 5
#Constraints 5
#Linear Constraints 5
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature linear
#Nonzeros in Jacobian 5
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 18
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 5
Maximal blocksize in Hessian of Lagrangian 5
Average blocksize in Hessian of Lagrangian 5.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 6.0000e+00
Infeasibility of initial point 1
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          6        6        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          6        6        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         11        6        5        0
*
*  Solve m using NLP minimizing objvar;


Variables  objvar,x2,x3,x4,x5,x6;

Positive Variables  x2,x3,x4,x5,x6;

Equations  e1,e2,e3,e4,e5,e6;


e1.. -(2*x2*x4 + 4*x2*x5 + 3*x2*x6 + 6*x3*x4 + 2*x3*x5 + 3*x3*x6 + 5*x4*x5 + 3*
     x4*x6 + 3*x5*x6) + objvar =E= 0;

e2..    x2 =E= 1;

e3..    x3 =E= 1;

e4..    x4 =E= 1;

e5..    x5 =E= 1;

e6..    x6 =E= 1;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0