MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance nemhaus
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 31.00000000 (ANTIGONE) 31.00000000 (BARON) 31.00000000 (COUENNE) 31.00000000 (CPLEX) 31.00000000 (LINDO) 31.00000000 (SCIP) |
Referencesⓘ | Carlson, R C and Nemhauser, G L, Scheduling to Minimize Interaction Cost, Operations Research, 14:1, 1966, 52-58. |
Sourceⓘ | GAMS Model Library model nemhaus |
Applicationⓘ | Job Scheduling |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | QP |
#Variablesⓘ | 5 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 5 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 5 |
#Nonlinear Nonzeros in Objectiveⓘ | 5 |
#Constraintsⓘ | 5 |
#Linear Constraintsⓘ | 5 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 5 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 18 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 5 |
Maximal blocksize in Hessian of Lagrangianⓘ | 5 |
Average blocksize in Hessian of Lagrangianⓘ | 5.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 6.0000e+00 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 6 6 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 6 6 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 11 6 5 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6; Positive Variables x2,x3,x4,x5,x6; Equations e1,e2,e3,e4,e5,e6; e1.. -(2*x2*x4 + 4*x2*x5 + 3*x2*x6 + 6*x3*x4 + 2*x3*x5 + 3*x3*x6 + 5*x4*x5 + 3* x4*x6 + 3*x5*x6) + objvar =E= 0; e2.. x2 =E= 1; e3.. x3 =E= 1; e4.. x4 =E= 1; e5.. x5 =E= 1; e6.. x6 =E= 1; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91