MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance nvs24
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -1033.20000100 (ANTIGONE) -1033.20000000 (BARON) -1033.20000000 (COUENNE) -1033.20000000 (GUROBI) -4887.06785500 (LINDO) -1033.20000000 (SCIP) -1033.20000000 (SHOT) |
Referencesⓘ | Gupta, Omprakash K and Ravindran, A, Branch and Bound Experiments in Convex Nonlinear Integer Programming, Management Science, 13:12, 1985, 1533-1546. Tawarmalani, M and Sahinidis, N V, Exact Algorithms for Global Optimization of Mixed-Integer Nonlinear Programs. In Pardalos, Panos M and Romeijn, H Edwin, Eds, Handbook of Global Optimization - Volume 2: Heuristic Approaches, Kluwer Academic Publishers, 65-85. Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. |
Sourceⓘ | BARON book instance gupta/gupta24 |
Added to libraryⓘ | 25 Jul 2002 |
Problem typeⓘ | IQCQP |
#Variablesⓘ | 10 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 10 |
#Nonlinear Variablesⓘ | 10 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 10 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 10 |
#Nonlinear Nonzeros in Objectiveⓘ | 10 |
#Constraintsⓘ | 10 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 10 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 100 |
#Nonlinear Nonzeros in Jacobianⓘ | 100 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 100 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 10 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 10 |
Maximal blocksize in Hessian of Lagrangianⓘ | 10 |
Average blocksize in Hessian of Lagrangianⓘ | 10.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.0000e+00 |
Maximal coefficientⓘ | 1.2500e+02 |
Infeasibility of initial pointⓘ | 1.188e+06 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 11 1 10 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 11 1 0 10 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 111 1 110 0 * * Solve m using MINLP minimizing objvar; Variables i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,objvar; Integer Variables i1,i2,i3,i4,i5,i6,i7,i8,i9,i10; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11; e1.. (-9*sqr(i1)) - 10*i1*i2 - 8*sqr(i2) - 5*sqr(i3) - 6*i3*i1 - 10*i3*i2 - 7* sqr(i4) - 10*i4*i1 - 6*i4*i2 - 2*i4*i3 - 2*i5*i2 - 7*sqr(i5) - 6*i6*i1 - 2 *i6*i2 - 2*i6*i4 - 5*sqr(i6) + 6*i7*i1 + 2*i7*i2 + 4*i7*i3 + 2*i7*i4 - 4* i7*i5 + 4*i7*i6 - 8*sqr(i7) - 2*i8*i1 - 6*i8*i2 - 2*i8*i3 + 6*i8*i5 - 2*i8 *i7 - 6*sqr(i8) + 2*i9*i3 - 4*i9*i4 + 8*i9*i5 + 4*i9*i6 - 6*i9*i8 - 6*sqr( i9) + 2*i10*i1 + 2*i10*i2 - 2*i10*i4 + 2*i10*i5 - 2*i10*i6 - 2*i10*i8 - 6* i10*i9 - 8*sqr(i10) =G= -1930; e2.. (-6*sqr(i1)) - 8*i1*i2 - 6*sqr(i2) - 4*sqr(i3) - 2*i3*i1 - 2*i3*i2 - 8* sqr(i4) + 2*i4*i1 + 10*i4*i2 - 2*i5*i1 - 6*i5*i2 + 6*i5*i4 + 7*sqr(i5) - 2 *i6*i2 + 8*i6*i3 + 2*i6*i4 - 4*i6*i5 - 8*sqr(i6) - 6*i7*i1 - 10*i7*i2 - 2* i7*i3 + 10*i7*i4 - 10*i7*i5 - 8*sqr(i7) - 2*i8*i1 - 4*i8*i2 - 2*i8*i3 - 8* i8*i5 - 8*i8*i7 - 5*sqr(i8) - 2*i9*i1 - 2*i9*i2 + 4*i9*i6 + 2*i9*i7 - 6* sqr(i9) + 4*i10*i1 - 2*i10*i3 + 4*i10*i4 + 6*i10*i6 - 2*i10*i7 - 2*i10*i8 - 6*sqr(i10) =G= -3140; e3.. (-9*sqr(i1)) - 6*sqr(i2) - 8*sqr(i3) + 2*i2*i1 + 2*i3*i2 - 6*sqr(i4) + 4* i4*i1 + 4*i4*i2 - 2*i4*i3 - 6*i5*i1 - 2*i5*i2 + 4*i5*i4 + 6*sqr(i5) + 2*i6 *i1 + 4*i6*i2 - 6*i6*i4 - 2*i6*i5 - 5*sqr(i6) + 2*i7*i2 - 4*i7*i3 - 6*i7* i5 - 4*i7*i6 - 7*sqr(i7) - 2*i8*i1 + 4*i8*i3 + 2*i8*i4 - 4*sqr(i8) + 10*i9 *i1 + 6*i9*i2 - 4*i9*i3 - 10*i9*i4 + 8*i9*i5 - 6*i9*i6 - 2*i9*i7 - 8*sqr( i9) - 4*i10*i2 + 2*i10*i3 + 4*i10*i4 + 6*i10*i5 + 2*i10*i7 - 2*i10*i8 + 2* i10*i9 - 7*sqr(i10) + 4*i10*i6 =G= -1600; e4.. (-8*sqr(i1)) - 4*sqr(i2) - 9*sqr(i3) - 7*sqr(i4) - 2*i2*i1 - 2*i3*i1 - 4* i3*i2 + 6*i4*i1 + 2*i4*i2 - 2*i4*i3 - 6*i5*i1 - 4*i5*i2 - 2*i5*i3 + 6*i5* i4 + 6*sqr(i5) - 10*i6*i1 - 10*i6*i3 + 4*i6*i4 - 2*i6*i5 - 7*sqr(i6) + 6* i7*i1 - 2*i7*i2 - 2*i7*i3 + 6*i7*i5 + 2*i7*i6 - 6*sqr(i7) + 4*i8*i1 - 4*i8 *i2 + 2*i8*i3 - 4*i8*i4 - 4*i8*i5 + 8*i8*i6 + 6*i8*i6 - 8*sqr(i8) - 4*i9* i1 + 4*i9*i2 + 6*i9*i3 - 2*i9*i4 + 2*i9*i6 + 8*i9*i7 - 4*i9*i8 - 10*sqr(i9 ) + 8*i10*i1 + 4*i10*i2 + 2*i10*i3 + 2*i10*i4 + 4*i10*i6 - 6*sqr(i10) =G= -1260; e5.. 2*i2*i1 - 4*sqr(i1) - 5*sqr(i2) - 6*i3*i1 - 8*sqr(i3) - 2*i4*i1 + 6*i4*i2 - 2*i4*i3 - 6*sqr(i4) - 4*i5*i1 + 2*i5*i2 - 6*i5*i3 - 8*i5*i4 - 7*sqr(i5) + 4*i6*i1 - 4*i6*i2 + 6*i6*i3 + 4*i6*i5 - 7*sqr(i6) + 4*i7*i1 - 4*i7*i2 - 4*i7*i3 + 4*i7*i4 + 4*i7*i5 + 4*i7*i6 - 8*sqr(i7) - 2*i8*i1 + 4*i8*i4 + 2*i8*i6 + 2*i8*i7 - 4*sqr(i8) - 2*i9*i2 + 4*i9*i3 + 4*i9*i4 - 2*i9*i5 + 2*i9*i6 + 6*i9*i7 - 6*i9*i8 - 7*sqr(i9) - 6*i10*i3 - 2*i10*i4 - 4*i10* i5 - 4*i10*i9 - 8*sqr(i10) + 2*i10*i8 =G= -1430; e6.. 2*i2*i1 - 7*sqr(i1) - 7*sqr(i2) - 6*i3*i1 - 2*i3*i2 - 6*sqr(i3) - 2*i4*i1 + 2*i4*i2 - 2*i4*i3 - 5*sqr(i4) - 2*i5*i1 - 4*i5*i3 + 2*i5*i4 - 5*sqr(i5) + 2*i6*i1 - 4*i6*i2 + 4*i6*i3 + 2*i6*i4 + 6*i6*i5 - 9*sqr(i6) + 4*i7*i2 - 4*i7*i3 + 4*i7*i4 - 4*i7*i5 + 8*i7*i6 - 6*sqr(i7) + 4*i8*i1 + 8*i8*i2 + 2*i8*i3 - 4*i8*i4 - 2*i8*i5 + 4*i8*i6 - 9*sqr(i8) - 4*i9*i1 + 2*i9*i4 + 6*i9*i5 - 4*i9*i6 - 2*i9*i7 + 2*i9*i8 - 6*sqr(i9) + 2*i10*i1 - 2*i10*i5 - 4*i10*i6 + 2*i10*i7 + 2*i10*i8 + 6*i10*i9 - 5*sqr(i10) =G= -1020; e7.. (-9*sqr(i1)) - 4*i2*i1 - 8*sqr(i2) + 4*i3*i1 + 2*i3*i2 - 7*sqr(i3) + 4*i4* i1 + 4*i4*i3 - 7*sqr(i4) - 2*i5*i1 - 12*i5*i2 - 4*i5*i3 - 8*sqr(i5) - 8*i6 *i1 + 2*i6*i2 - 2*i6*i5 - 6*sqr(i6) - 4*i7*i1 - 6*i7*i2 - 2*i7*i3 + 10*i7* i4 - 2*i7*i5 + 2*i7*i6 - 7*sqr(i7) - 2*i8*i1 + 2*i8*i2 + 2*i8*i3 + 2*i8*i4 - 6*i8*i6 - 2*i8*i7 - 6*sqr(i8) + 4*i9*i1 + 2*i9*i2 + 4*i9*i3 + 4*i9*i4 + 2*i9*i5 - 2*i9*i6 - 9*sqr(i9) + 6*i10*i1 - 6*i10*i3 + 10*i10*i4 + 6*i10 *i6 - 8*i10*i7 - 4*i10*i9 - 8*sqr(i10) =G= -2860; e8.. 4*i2*i1 - 7*sqr(i1) - 8*sqr(i2) + 4*i3*i1 - 8*sqr(i3) + 4*i4*i1 + 8*i4*i2 - 6*i4*i3 - 7*sqr(i4) - 2*i5*i2 + 2*i5*i4 - 5*sqr(i5) - 2*i6*i1 - 2*i6*i2 + 4*i6*i4 - 4*i6*i5 - 7*sqr(i6) - 2*i7*i1 + 8*i7*i2 - 2*i7*i3 - 2*i7*i4 + 6*i7*i5 + 2*i7*i6 - 7*sqr(i7) + 2*i8*i1 - 6*i8*i2 + 6*i8*i3 + 4*i8*i4 + 2*i8*i5 - 4*i8*i6 - 6*sqr(i8) + 4*i9*i1 - 6*i9*i2 + 2*i9*i3 - 2*i9*i4 + 2*i9*i5 + 6*i9*i6 + 2*i9*i7 - 4*i9*i8 - 6*sqr(i9) - 2*i10*i1 - 2*i10*i2 - 4*i10*i3 + 4*i10*i5 + 4*i10*i6 + 2*i10*i8 - 4*i10*i9 - 6*sqr(i10) =G= -880; e9.. 2*i2*i1 - 4*sqr(i1) - 7*sqr(i2) + 8*i3*i1 - 4*i3*i2 - 9*sqr(i3) - 2*i4*i1 - 4*i4*i2 - 2*i4*i3 - 6*sqr(i4) + 4*i5*i1 + 2*i5*i2 + 4*i5*i3 + 6*i5*i4 - 6*sqr(i5) + 4*i6*i3 - 6*i6*i4 - 7*sqr(i6) - 2*i7*i2 - 4*i7*i3 + 4*i7*i5 + 8*i7*i6 - 7*sqr(i7) + 2*i8*i2 - 4*i8*i3 + 2*i8*i4 + 2*i8*i5 + 6*i8*i7 - 7*sqr(i8) + 4*i9*i1 + 2*i9*i2 - 10*i9*i3 + 2*i9*i5 + 2*i9*i6 - 8*i9*i8 - 6*sqr(i9) + 2*i10*i1 + 2*i10*i2 + 4*i10*i3 + 8*i10*i4 - 4*i10*i5 - 2* i10*i6 + 2*i10*i7 - 2*i10*i8 + 2*i10*i9 - 8*sqr(i10) =G= -700; e10.. 6*i2*i1 - 7*sqr(i1) - 6*sqr(i2) - 10*i3*i1 + 6*i3*i2 - 8*sqr(i3) + 4*i4* i1 + 2*i4*i2 + 2*i4*i3 - 8*sqr(i4) - 2*i5*i1 + 2*i5*i2 + 8*i5*i4 - 4*sqr( i5) + 4*i6*i1 + 2*i6*i3 - 4*i6*i4 + 2*i6*i5 - 2*sqr(i6) - 2*i7*i1 + 2*i7* i2 - 4*i7*i3 + 2*i7*i4 + 2*i7*i5 + 2*i7*i6 - 6*sqr(i7) - 2*i8*i1 + 2*i8* i2 - 6*i8*i3 + 6*i8*i4 - 2*i8*i5 + 2*i8*i6 - 4*i8*i7 - 5*sqr(i8) + 4*i9* i1 - 4*i9*i2 - 10*i9*i4 + 6*i9*i5 - 2*i9*i6 + 2*i9*i7 + 4*i9*i8 - 6*sqr( i9) + 2*i10*i2 - 4*i10*i3 + 2*i10*i4 - 2*i10*i5 + 2*i10*i6 + 4*i10*i7 - 6 *i10*i8 + 2*i10*i9 - 7*sqr(i10) =G= -360; e11.. -(7*sqr(i1) + 6*sqr(i2) + 37.6*i1 + 19.6*i2 + 8*sqr(i3) - 6*i3*i1 + 4*i3* i2 - 5.6*i3 + 6*sqr(i4) + 2*i4*i1 + 2*i4*i3 - 26*i4 + 7*sqr(i5) - 4*i5*i1 - 2*i5*i2 - 6*i5*i3 - 125*i5 + 4*sqr(i6) + 2*i6*i1 - 4*i6*i2 - 4*i6*i3 - 2*i6*i4 + 6*i6*i5 - 79.6*i6 + 6*sqr(i7) - 2*i7*i1 - 6*i7*i2 - 2*i7*i3 + 4*i7*i5 + 4*i7*i6 - 104.2*i7 + 7*sqr(i8) - 4*i8*i1 - 2*i8*i2 + 6*i8*i3 + 4*i8*i4 - 4*i8*i5 - 2*i8*i6 + 4*i8*i7 - 4.6*i8 + 8*sqr(i9) - 2*i9*i1 - 4*i9*i2 + 4*i9*i3 + 4*i9*i4 - 4*i9*i5 - 4*i9*i6 + 8*i9*i7 + 4*i9*i8 - 22.8*i9 + 6*sqr(i10) - 4*i10*i1 - 6*i10*i2 + 2*i10*i3 - 4*i10*i4 + 2*i10* i5 + 2*i10*i6 - 2*i10*i7 - 4*i10*i8 - 2*i10*i9 + 9*i10) + objvar =E= 0; * set non-default bounds i1.up = 200; i2.up = 200; i3.up = 200; i4.up = 200; i5.up = 200; i6.up = 200; i7.up = 200; i8.up = 200; i9.up = 200; i10.up = 200; * set non-default levels i1.l = 100; i2.l = 100; i3.l = 100; i4.l = 100; i5.l = 100; i6.l = 100; i7.l = 100; i8.l = 100; i9.l = 100; i10.l = 100; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91