MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance ortez
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -9532.03906300 (ANTIGONE) -9532.03906300 (BARON) -9532.03905300 (COUENNE) -9532.03905300 (LINDO) -9532.03905700 (SCIP) |
Sourceⓘ | GAMS Client |
Applicationⓘ | Farming |
Added to libraryⓘ | 01 May 2001 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 87 |
#Binary Variablesⓘ | 18 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 33 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 36 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 74 |
#Linear Constraintsⓘ | 47 |
#Quadratic Constraintsⓘ | 21 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 6 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 232 |
#Nonlinear Nonzeros in Jacobianⓘ | 54 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 57 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 3 |
#Blocks in Hessian of Lagrangianⓘ | 6 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 9 |
Average blocksize in Hessian of Lagrangianⓘ | 5.5 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.7200e-01 |
Maximal coefficientⓘ | 5.0800e+02 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 75 25 18 32 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 88 70 18 0 0 0 0 0 * FX 1 * * Nonzero counts * Total const NL DLL * 269 215 54 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,b49,b50,b51,b52,b53 ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48; Binary Variables b49,b50,b51,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63 ,b64,b65,b66; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75; e1.. b58 + b61 + b64 =L= 1; e2.. b59 + b62 + b65 =L= 1; e3.. b60 + b63 + b66 =L= 1; e4.. x4 + x5 + x6 + x13 + x14 + x15 =E= 1; e5.. x7 + x8 + x9 + x16 + x17 + x18 =E= 1; e6.. x10 + x11 + x12 + x19 + x20 + x21 =E= 1; e7.. - 3.16363636363636*x4 - 3.16363636363636*x5 - 3.16363636363636*x6 + 56.3636363636364*b58 + 43.2*b61 + 33.8181818181818*b64 - x85 + x86 =L= 0; e8.. - 3.16363636363636*x7 - 3.16363636363636*x8 - 3.16363636363636*x9 + 56.3636363636364*b59 + 43.2*b62 + 33.8181818181818*b65 - x86 + x87 =L= 0; e9.. -6.353*x1**0.172*x40 + x22 + x23 + x24 =L= 0; e10.. -6.353*x2**0.172*x41 + x25 + x26 + x27 =L= 0; e11.. -6.353*x3**0.172*x42 + x28 + x29 + x30 =L= 0; e12.. -0.32*x1**0.617*x43 + x31 + x32 + x33 =L= 0; e13.. -0.32*x2**0.617*x44 + x34 + x35 + x36 =L= 0; e14.. -0.32*x3**0.617*x45 + x37 + x38 + x39 =L= 0; e15.. x22 + x31 - 50*b58 =L= 0; e16.. x25 + x34 - 50*b59 =L= 0; e17.. x28 + x37 - 50*b60 =L= 0; e18.. x23 + x32 - 50*b61 =L= 0; e19.. x26 + x35 - 50*b62 =L= 0; e20.. x29 + x38 - 50*b63 =L= 0; e21.. x24 + x33 - 50*b64 =L= 0; e22.. x27 + x36 - 50*b65 =L= 0; e23.. x30 + x39 - 50*b66 =L= 0; e24.. x4 + x13 - b58 =L= 0; e25.. x7 + x16 - b59 =L= 0; e26.. x10 + x19 - b60 =L= 0; e27.. x5 + x14 - b61 =L= 0; e28.. x8 + x17 - b62 =L= 0; e29.. x11 + x20 - b63 =L= 0; e30.. x6 + x15 - b64 =L= 0; e31.. x9 + x18 - b65 =L= 0; e32.. x12 + x21 - b66 =L= 0; e33.. - 200*b52 + x85 =G= 0; e34.. - 200*b53 + x86 =G= 0; e35.. - 200*b54 + x87 =G= 0; e36.. - 200*b55 + x85 =G= 0; e37.. - 200*b56 + x86 =G= 0; e38.. - 200*b57 + x87 =G= 0; e39.. - x40 + b52 =G= 0; e40.. - x41 + b53 =G= 0; e41.. - x42 + b54 =G= 0; e42.. - x43 + b55 =G= 0; e43.. - x44 + b56 =G= 0; e44.. - x45 + b57 =G= 0; e45.. - x46 + b49 =E= 0; e46.. - x47 + b50 =E= 0; e47.. - x48 + b51 =E= 0; e48.. x85*(1 - x46) - x1 =G= -0.001; e49.. x86*(1 - x47) - x2 =G= -0.001; e50.. x87*(1 - x48) - x3 =G= -0.001; e51.. 508*b49 + x85 =G= 200; e52.. 508*b50 + x86 =G= 200; e53.. 508*b51 + x87 =G= 200; e54.. 508*b49 + x85 =L= 708; e55.. 508*b50 + x86 =L= 708; e56.. 508*b51 + x87 =L= 708; e57.. -81.9*x40*x4 + x67 =E= 0; e58.. -81.9*x41*x7 + x70 =E= 0; e59.. -81.9*x42*x10 + x73 =E= 0; e60.. -81.9*x40*x5 + x68 =E= 0; e61.. -81.9*x41*x8 + x71 =E= 0; e62.. -81.9*x42*x11 + x74 =E= 0; e63.. -54.6*x40*x6 + x69 =E= 0; e64.. -54.6*x41*x9 + x72 =E= 0; e65.. -54.6*x42*x12 + x75 =E= 0; e66.. -136.62*x40*x13 + x76 =E= 0; e67.. -136.62*x41*x16 + x79 =E= 0; e68.. -136.62*x42*x19 + x82 =E= 0; e69.. -136.62*x40*x14 + x77 =E= 0; e70.. -136.62*x41*x17 + x80 =E= 0; e71.. -136.62*x42*x20 + x83 =E= 0; e72.. -91.08*x40*x15 + x78 =E= 0; e73.. -91.08*x41*x18 + x81 =E= 0; e74.. -91.08*x42*x21 + x84 =E= 0; e75.. - 300.544*x22 - 225.408*x23 - 150.272*x24 - 300.544*x25 - 225.408*x26 - 150.272*x27 - 300.544*x28 - 225.408*x29 - 150.272*x30 - 2.66666666666667*x31 - 4*x32 - 5.33333333333333*x33 - 2.66666666666667*x34 - 4*x35 - 5.33333333333333*x36 - 2.66666666666667*x37 - 4*x38 - 5.33333333333333*x39 + 1.33333333333333*x67 + x68 + x69 + 1.33333333333333*x70 + x71 + x72 + 1.33333333333333*x73 + x74 + x75 + 1.33333333333333*x76 + x77 + x78 + 1.33333333333333*x79 + x80 + x81 + 1.33333333333333*x82 + x83 + x84 - objvar =E= 0; * set non-default bounds x1.up = 254.001; x2.up = 254.001; x3.up = 254.001; x85.fx = 254; * set non-default levels x1.l = 254; x2.l = 254; x3.l = 254; x86.l = 254; x87.l = 254; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91