MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance p_ball_10b_5p_2d_h
Select 5-points in 2-dimensional balls, such that the l1-distance between all points is minimized. Only one point can be assigned to each ball, and in total there are 10 balls with radius one. This is a convex-hull formulation.
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 18.71835427 (ALPHAECP) 18.71857797 (ANTIGONE) 18.71857003 (BARON) 18.71857797 (BONMIN) 18.71856412 (COUENNE) 18.71857799 (LINDO) 18.71857507 (SCIP) 0.00000000 (SHOT) |
Referencesⓘ | Kronqvist, Jan and Misener, Ruth, A disjunctive cut strengthening technique for convex MINLP, Tech. Rep., 2020. |
Sourceⓘ | p_ball_10b_5p_2d_H.gms with the epsilon in the perspective formulation changed to 1e-4, contributed by Jan Kronqvist and Ruth Misener |
Applicationⓘ | Geometry |
Added to libraryⓘ | 26 Aug 2020 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 180 |
#Binary Variablesⓘ | 50 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 150 |
#Nonlinear Binary Variablesⓘ | 50 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 20 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 219 |
#Linear Constraintsⓘ | 169 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 50 |
Operands in Gen. Nonlin. Functionsⓘ | div mul sqr |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 688 |
#Nonlinear Nonzeros in Jacobianⓘ | 150 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 350 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 150 |
#Blocks in Hessian of Lagrangianⓘ | 50 |
Minimal blocksize in Hessian of Lagrangianⓘ | 3 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 3.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-04 |
Maximal coefficientⓘ | 1.0000e+01 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 220 16 0 204 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 181 131 50 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 709 559 150 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36 ,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116 ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129 ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142 ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155 ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168 ,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,objvar; Positive Variables x51,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64 ,x65,x66,x67,x68,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81 ,x82,x83,x84,x85,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98 ,x99,x100,x101,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111 ,x112,x113,x114,x115,x116,x117,x118,x119,x120,x121,x122,x123,x124 ,x125,x126,x127,x128,x129,x130,x131,x132,x133,x134,x135,x136,x137 ,x138,x139,x140,x141,x142,x143,x144,x145,x146,x147,x148,x149,x150 ,x151,x152,x153,x154,x155,x156,x157,x158,x159,x160,x161,x162,x163 ,x164,x165,x166,x167,x168,x169,x170,x171,x172,x173,x174,x175,x176 ,x177,x178,x179,x180; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17 ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34 ,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168 ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181 ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194 ,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207 ,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220; e1.. x51 - x52 - x53 =L= 0; e2.. - x51 + x52 - x53 =L= 0; e3.. x54 - x55 - x56 =L= 0; e4.. - x54 + x55 - x56 =L= 0; e5.. x51 - x57 - x58 =L= 0; e6.. - x51 + x57 - x58 =L= 0; e7.. x54 - x59 - x60 =L= 0; e8.. - x54 + x59 - x60 =L= 0; e9.. x51 - x61 - x62 =L= 0; e10.. - x51 + x61 - x62 =L= 0; e11.. x54 - x63 - x64 =L= 0; e12.. - x54 + x63 - x64 =L= 0; e13.. x51 - x65 - x66 =L= 0; e14.. - x51 + x65 - x66 =L= 0; e15.. x54 - x67 - x68 =L= 0; e16.. - x54 + x67 - x68 =L= 0; e17.. x52 - x57 - x69 =L= 0; e18.. - x52 + x57 - x69 =L= 0; e19.. x55 - x59 - x70 =L= 0; e20.. - x55 + x59 - x70 =L= 0; e21.. x52 - x61 - x71 =L= 0; e22.. - x52 + x61 - x71 =L= 0; e23.. x55 - x63 - x72 =L= 0; e24.. - x55 + x63 - x72 =L= 0; e25.. x52 - x65 - x73 =L= 0; e26.. - x52 + x65 - x73 =L= 0; e27.. x55 - x67 - x74 =L= 0; e28.. - x55 + x67 - x74 =L= 0; e29.. x57 - x61 - x75 =L= 0; e30.. - x57 + x61 - x75 =L= 0; e31.. x59 - x63 - x76 =L= 0; e32.. - x59 + x63 - x76 =L= 0; e33.. x57 - x65 - x77 =L= 0; e34.. - x57 + x65 - x77 =L= 0; e35.. x59 - x67 - x78 =L= 0; e36.. - x59 + x67 - x78 =L= 0; e37.. x61 - x65 - x79 =L= 0; e38.. - x61 + x65 - x79 =L= 0; e39.. x63 - x67 - x80 =L= 0; e40.. - x63 + x67 - x80 =L= 0; e41.. (-1 + sqr(0.648386267690458 - x81/(0.0001 + 0.9999*b1)) + sqr( 5.34198386756466 - x82/(0.0001 + 0.9999*b1)))*(0.0001 + 0.9999*b1) + 0.00279571963934506*b1 =L= 0.00279571963934506; e42.. (-1 + sqr(0.38028139143083 - x83/(0.0001 + 0.9999*b2)) + sqr( 4.79200736168083 - x84/(0.0001 + 0.9999*b2)))*(0.0001 + 0.9999*b2) + 0.00221079484910719*b2 =L= 0.00221079484910719; e43.. (-1 + sqr(4.59553989190787 - x85/(0.0001 + 0.9999*b3)) + sqr( 2.92927044373959 - x86/(0.0001 + 0.9999*b3)))*(0.0001 + 0.9999*b3) + 0.00286996122306829*b3 =L= 0.00286996122306829; e44.. (-1 + sqr(7.79089239319392 - x87/(0.0001 + 0.9999*b4)) + sqr( 3.09688601355012 - x88/(0.0001 + 0.9999*b4)))*(0.0001 + 0.9999*b4) + 0.00692887072632492*b4 =L= 0.00692887072632492; e45.. (-1 + sqr(2.20597420581599 - x89/(0.0001 + 0.9999*b5)) + sqr( 0.880296019425143 - x90/(0.0001 + 0.9999*b5)))*(0.0001 + 0.9999*b5) + 0.000464124327854123*b5 =L= 0.000464124327854123; e46.. (-1 + sqr(4.31093077060147 - x91/(0.0001 + 0.9999*b6)) + sqr( 5.42555328385657 - x92/(0.0001 + 0.9999*b6)))*(0.0001 + 0.9999*b6) + 0.00470207525448854*b6 =L= 0.00470207525448854; e47.. (-1 + sqr(8.68776252232421 - x93/(0.0001 + 0.9999*b7)) + sqr( 7.42106012944621 - x94/(0.0001 + 0.9999*b7)))*(0.0001 + 0.9999*b7) + 0.0129549351089157*b7 =L= 0.0129549351089157; e48.. (-1 + sqr(3.86794113528858 - x95/(0.0001 + 0.9999*b8)) + sqr( 9.34863265837716 - x96/(0.0001 + 0.9999*b8)))*(0.0001 + 0.9999*b8) + 0.0101357901207334*b8 =L= 0.0101357901207334; e49.. (-1 + sqr(8.94294324678777 - x97/(0.0001 + 0.9999*b9)) + sqr( 0.712193380632226 - x98/(0.0001 + 0.9999*b9)))*(0.0001 + 0.9999*b9) + 0.00794834533266834*b9 =L= 0.00794834533266834; e50.. (-1 + sqr(1.56734614217404 - x99/(0.0001 + 0.9999*b10)) + sqr( 5.6469805099144 - x100/(0.0001 + 0.9999*b10)))*(0.0001 + 0.9999*b10) + 0.00333449628087409*b10 =L= 0.00333449628087409; e51.. b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 + b9 + b10 =E= 1; e52.. (-1 + sqr(0.648386267690458 - x101/(0.0001 + 0.9999*b11)) + sqr( 5.34198386756466 - x102/(0.0001 + 0.9999*b11)))*(0.0001 + 0.9999*b11) + 0.00279571963934506*b11 =L= 0.00279571963934506; e53.. (-1 + sqr(0.38028139143083 - x103/(0.0001 + 0.9999*b12)) + sqr( 4.79200736168083 - x104/(0.0001 + 0.9999*b12)))*(0.0001 + 0.9999*b12) + 0.00221079484910719*b12 =L= 0.00221079484910719; e54.. (-1 + sqr(4.59553989190787 - x105/(0.0001 + 0.9999*b13)) + sqr( 2.92927044373959 - x106/(0.0001 + 0.9999*b13)))*(0.0001 + 0.9999*b13) + 0.00286996122306829*b13 =L= 0.00286996122306829; e55.. (-1 + sqr(7.79089239319392 - x107/(0.0001 + 0.9999*b14)) + sqr( 3.09688601355012 - x108/(0.0001 + 0.9999*b14)))*(0.0001 + 0.9999*b14) + 0.00692887072632492*b14 =L= 0.00692887072632492; e56.. (-1 + sqr(2.20597420581599 - x109/(0.0001 + 0.9999*b15)) + sqr( 0.880296019425143 - x110/(0.0001 + 0.9999*b15)))*(0.0001 + 0.9999*b15) + 0.000464124327854123*b15 =L= 0.000464124327854123; e57.. (-1 + sqr(4.31093077060147 - x111/(0.0001 + 0.9999*b16)) + sqr( 5.42555328385657 - x112/(0.0001 + 0.9999*b16)))*(0.0001 + 0.9999*b16) + 0.00470207525448854*b16 =L= 0.00470207525448854; e58.. (-1 + sqr(8.68776252232421 - x113/(0.0001 + 0.9999*b17)) + sqr( 7.42106012944621 - x114/(0.0001 + 0.9999*b17)))*(0.0001 + 0.9999*b17) + 0.0129549351089157*b17 =L= 0.0129549351089157; e59.. (-1 + sqr(3.86794113528858 - x115/(0.0001 + 0.9999*b18)) + sqr( 9.34863265837716 - x116/(0.0001 + 0.9999*b18)))*(0.0001 + 0.9999*b18) + 0.0101357901207334*b18 =L= 0.0101357901207334; e60.. (-1 + sqr(8.94294324678777 - x117/(0.0001 + 0.9999*b19)) + sqr( 0.712193380632226 - x118/(0.0001 + 0.9999*b19)))*(0.0001 + 0.9999*b19) + 0.00794834533266834*b19 =L= 0.00794834533266834; e61.. (-1 + sqr(1.56734614217404 - x119/(0.0001 + 0.9999*b20)) + sqr( 5.6469805099144 - x120/(0.0001 + 0.9999*b20)))*(0.0001 + 0.9999*b20) + 0.00333449628087409*b20 =L= 0.00333449628087409; e62.. b11 + b12 + b13 + b14 + b15 + b16 + b17 + b18 + b19 + b20 =E= 1; e63.. (-1 + sqr(0.648386267690458 - x121/(0.0001 + 0.9999*b21)) + sqr( 5.34198386756466 - x122/(0.0001 + 0.9999*b21)))*(0.0001 + 0.9999*b21) + 0.00279571963934506*b21 =L= 0.00279571963934506; e64.. (-1 + sqr(0.38028139143083 - x123/(0.0001 + 0.9999*b22)) + sqr( 4.79200736168083 - x124/(0.0001 + 0.9999*b22)))*(0.0001 + 0.9999*b22) + 0.00221079484910719*b22 =L= 0.00221079484910719; e65.. (-1 + sqr(4.59553989190787 - x125/(0.0001 + 0.9999*b23)) + sqr( 2.92927044373959 - x126/(0.0001 + 0.9999*b23)))*(0.0001 + 0.9999*b23) + 0.00286996122306829*b23 =L= 0.00286996122306829; e66.. (-1 + sqr(7.79089239319392 - x127/(0.0001 + 0.9999*b24)) + sqr( 3.09688601355012 - x128/(0.0001 + 0.9999*b24)))*(0.0001 + 0.9999*b24) + 0.00692887072632492*b24 =L= 0.00692887072632492; e67.. (-1 + sqr(2.20597420581599 - x129/(0.0001 + 0.9999*b25)) + sqr( 0.880296019425143 - x130/(0.0001 + 0.9999*b25)))*(0.0001 + 0.9999*b25) + 0.000464124327854123*b25 =L= 0.000464124327854123; e68.. (-1 + sqr(4.31093077060147 - x131/(0.0001 + 0.9999*b26)) + sqr( 5.42555328385657 - x132/(0.0001 + 0.9999*b26)))*(0.0001 + 0.9999*b26) + 0.00470207525448854*b26 =L= 0.00470207525448854; e69.. (-1 + sqr(8.68776252232421 - x133/(0.0001 + 0.9999*b27)) + sqr( 7.42106012944621 - x134/(0.0001 + 0.9999*b27)))*(0.0001 + 0.9999*b27) + 0.0129549351089157*b27 =L= 0.0129549351089157; e70.. (-1 + sqr(3.86794113528858 - x135/(0.0001 + 0.9999*b28)) + sqr( 9.34863265837716 - x136/(0.0001 + 0.9999*b28)))*(0.0001 + 0.9999*b28) + 0.0101357901207334*b28 =L= 0.0101357901207334; e71.. (-1 + sqr(8.94294324678777 - x137/(0.0001 + 0.9999*b29)) + sqr( 0.712193380632226 - x138/(0.0001 + 0.9999*b29)))*(0.0001 + 0.9999*b29) + 0.00794834533266834*b29 =L= 0.00794834533266834; e72.. (-1 + sqr(1.56734614217404 - x139/(0.0001 + 0.9999*b30)) + sqr( 5.6469805099144 - x140/(0.0001 + 0.9999*b30)))*(0.0001 + 0.9999*b30) + 0.00333449628087409*b30 =L= 0.00333449628087409; e73.. b21 + b22 + b23 + b24 + b25 + b26 + b27 + b28 + b29 + b30 =E= 1; e74.. (-1 + sqr(0.648386267690458 - x141/(0.0001 + 0.9999*b31)) + sqr( 5.34198386756466 - x142/(0.0001 + 0.9999*b31)))*(0.0001 + 0.9999*b31) + 0.00279571963934506*b31 =L= 0.00279571963934506; e75.. (-1 + sqr(0.38028139143083 - x143/(0.0001 + 0.9999*b32)) + sqr( 4.79200736168083 - x144/(0.0001 + 0.9999*b32)))*(0.0001 + 0.9999*b32) + 0.00221079484910719*b32 =L= 0.00221079484910719; e76.. (-1 + sqr(4.59553989190787 - x145/(0.0001 + 0.9999*b33)) + sqr( 2.92927044373959 - x146/(0.0001 + 0.9999*b33)))*(0.0001 + 0.9999*b33) + 0.00286996122306829*b33 =L= 0.00286996122306829; e77.. (-1 + sqr(7.79089239319392 - x147/(0.0001 + 0.9999*b34)) + sqr( 3.09688601355012 - x148/(0.0001 + 0.9999*b34)))*(0.0001 + 0.9999*b34) + 0.00692887072632492*b34 =L= 0.00692887072632492; e78.. (-1 + sqr(2.20597420581599 - x149/(0.0001 + 0.9999*b35)) + sqr( 0.880296019425143 - x150/(0.0001 + 0.9999*b35)))*(0.0001 + 0.9999*b35) + 0.000464124327854123*b35 =L= 0.000464124327854123; e79.. (-1 + sqr(4.31093077060147 - x151/(0.0001 + 0.9999*b36)) + sqr( 5.42555328385657 - x152/(0.0001 + 0.9999*b36)))*(0.0001 + 0.9999*b36) + 0.00470207525448854*b36 =L= 0.00470207525448854; e80.. (-1 + sqr(8.68776252232421 - x153/(0.0001 + 0.9999*b37)) + sqr( 7.42106012944621 - x154/(0.0001 + 0.9999*b37)))*(0.0001 + 0.9999*b37) + 0.0129549351089157*b37 =L= 0.0129549351089157; e81.. (-1 + sqr(3.86794113528858 - x155/(0.0001 + 0.9999*b38)) + sqr( 9.34863265837716 - x156/(0.0001 + 0.9999*b38)))*(0.0001 + 0.9999*b38) + 0.0101357901207334*b38 =L= 0.0101357901207334; e82.. (-1 + sqr(8.94294324678777 - x157/(0.0001 + 0.9999*b39)) + sqr( 0.712193380632226 - x158/(0.0001 + 0.9999*b39)))*(0.0001 + 0.9999*b39) + 0.00794834533266834*b39 =L= 0.00794834533266834; e83.. (-1 + sqr(1.56734614217404 - x159/(0.0001 + 0.9999*b40)) + sqr( 5.6469805099144 - x160/(0.0001 + 0.9999*b40)))*(0.0001 + 0.9999*b40) + 0.00333449628087409*b40 =L= 0.00333449628087409; e84.. b31 + b32 + b33 + b34 + b35 + b36 + b37 + b38 + b39 + b40 =E= 1; e85.. (-1 + sqr(0.648386267690458 - x161/(0.0001 + 0.9999*b41)) + sqr( 5.34198386756466 - x162/(0.0001 + 0.9999*b41)))*(0.0001 + 0.9999*b41) + 0.00279571963934506*b41 =L= 0.00279571963934506; e86.. (-1 + sqr(0.38028139143083 - x163/(0.0001 + 0.9999*b42)) + sqr( 4.79200736168083 - x164/(0.0001 + 0.9999*b42)))*(0.0001 + 0.9999*b42) + 0.00221079484910719*b42 =L= 0.00221079484910719; e87.. (-1 + sqr(4.59553989190787 - x165/(0.0001 + 0.9999*b43)) + sqr( 2.92927044373959 - x166/(0.0001 + 0.9999*b43)))*(0.0001 + 0.9999*b43) + 0.00286996122306829*b43 =L= 0.00286996122306829; e88.. (-1 + sqr(7.79089239319392 - x167/(0.0001 + 0.9999*b44)) + sqr( 3.09688601355012 - x168/(0.0001 + 0.9999*b44)))*(0.0001 + 0.9999*b44) + 0.00692887072632492*b44 =L= 0.00692887072632492; e89.. (-1 + sqr(2.20597420581599 - x169/(0.0001 + 0.9999*b45)) + sqr( 0.880296019425143 - x170/(0.0001 + 0.9999*b45)))*(0.0001 + 0.9999*b45) + 0.000464124327854123*b45 =L= 0.000464124327854123; e90.. (-1 + sqr(4.31093077060147 - x171/(0.0001 + 0.9999*b46)) + sqr( 5.42555328385657 - x172/(0.0001 + 0.9999*b46)))*(0.0001 + 0.9999*b46) + 0.00470207525448854*b46 =L= 0.00470207525448854; e91.. (-1 + sqr(8.68776252232421 - x173/(0.0001 + 0.9999*b47)) + sqr( 7.42106012944621 - x174/(0.0001 + 0.9999*b47)))*(0.0001 + 0.9999*b47) + 0.0129549351089157*b47 =L= 0.0129549351089157; e92.. (-1 + sqr(3.86794113528858 - x175/(0.0001 + 0.9999*b48)) + sqr( 9.34863265837716 - x176/(0.0001 + 0.9999*b48)))*(0.0001 + 0.9999*b48) + 0.0101357901207334*b48 =L= 0.0101357901207334; e93.. (-1 + sqr(8.94294324678777 - x177/(0.0001 + 0.9999*b49)) + sqr( 0.712193380632226 - x178/(0.0001 + 0.9999*b49)))*(0.0001 + 0.9999*b49) + 0.00794834533266834*b49 =L= 0.00794834533266834; e94.. (-1 + sqr(1.56734614217404 - x179/(0.0001 + 0.9999*b50)) + sqr( 5.6469805099144 - x180/(0.0001 + 0.9999*b50)))*(0.0001 + 0.9999*b50) + 0.00333449628087409*b50 =L= 0.00333449628087409; e95.. b41 + b42 + b43 + b44 + b45 + b46 + b47 + b48 + b49 + b50 =E= 1; e96.. b1 + b11 + b21 + b31 + b41 =L= 1; e97.. b2 + b12 + b22 + b32 + b42 =L= 1; e98.. b3 + b13 + b23 + b33 + b43 =L= 1; e99.. b4 + b14 + b24 + b34 + b44 =L= 1; e100.. b5 + b15 + b25 + b35 + b45 =L= 1; e101.. b6 + b16 + b26 + b36 + b46 =L= 1; e102.. b7 + b17 + b27 + b37 + b47 =L= 1; e103.. b8 + b18 + b28 + b38 + b48 =L= 1; e104.. b9 + b19 + b29 + b39 + b49 =L= 1; e105.. b10 + b20 + b30 + b40 + b50 =L= 1; e106.. - x51 + x81 + x83 + x85 + x87 + x89 + x91 + x93 + x95 + x97 + x99 =E= 0 ; e107.. - x54 + x82 + x84 + x86 + x88 + x90 + x92 + x94 + x96 + x98 + x100 =E= 0; e108.. - x52 + x101 + x103 + x105 + x107 + x109 + x111 + x113 + x115 + x117 + x119 =E= 0; e109.. - x55 + x102 + x104 + x106 + x108 + x110 + x112 + x114 + x116 + x118 + x120 =E= 0; e110.. - x57 + x121 + x123 + x125 + x127 + x129 + x131 + x133 + x135 + x137 + x139 =E= 0; e111.. - x59 + x122 + x124 + x126 + x128 + x130 + x132 + x134 + x136 + x138 + x140 =E= 0; e112.. - x61 + x141 + x143 + x145 + x147 + x149 + x151 + x153 + x155 + x157 + x159 =E= 0; e113.. - x63 + x142 + x144 + x146 + x148 + x150 + x152 + x154 + x156 + x158 + x160 =E= 0; e114.. - x65 + x161 + x163 + x165 + x167 + x169 + x171 + x173 + x175 + x177 + x179 =E= 0; e115.. - x67 + x162 + x164 + x166 + x168 + x170 + x172 + x174 + x176 + x178 + x180 =E= 0; e116.. - 10*b1 + x81 =L= 0; e117.. - 10*b2 + x83 =L= 0; e118.. - 10*b3 + x85 =L= 0; e119.. - 10*b4 + x87 =L= 0; e120.. - 10*b5 + x89 =L= 0; e121.. - 10*b6 + x91 =L= 0; e122.. - 10*b7 + x93 =L= 0; e123.. - 10*b8 + x95 =L= 0; e124.. - 10*b9 + x97 =L= 0; e125.. - 10*b10 + x99 =L= 0; e126.. - 10*b1 + x82 =L= 0; e127.. - 10*b2 + x84 =L= 0; e128.. - 10*b3 + x86 =L= 0; e129.. - 10*b4 + x88 =L= 0; e130.. - 10*b5 + x90 =L= 0; e131.. - 10*b6 + x92 =L= 0; e132.. - 10*b7 + x94 =L= 0; e133.. - 10*b8 + x96 =L= 0; e134.. - 10*b9 + x98 =L= 0; e135.. - 10*b10 + x100 =L= 0; e136.. - 10*b11 + x101 =L= 0; e137.. - 10*b12 + x103 =L= 0; e138.. - 10*b13 + x105 =L= 0; e139.. - 10*b14 + x107 =L= 0; e140.. - 10*b15 + x109 =L= 0; e141.. - 10*b16 + x111 =L= 0; e142.. - 10*b17 + x113 =L= 0; e143.. - 10*b18 + x115 =L= 0; e144.. - 10*b19 + x117 =L= 0; e145.. - 10*b20 + x119 =L= 0; e146.. - 10*b11 + x102 =L= 0; e147.. - 10*b12 + x104 =L= 0; e148.. - 10*b13 + x106 =L= 0; e149.. - 10*b14 + x108 =L= 0; e150.. - 10*b15 + x110 =L= 0; e151.. - 10*b16 + x112 =L= 0; e152.. - 10*b17 + x114 =L= 0; e153.. - 10*b18 + x116 =L= 0; e154.. - 10*b19 + x118 =L= 0; e155.. - 10*b20 + x120 =L= 0; e156.. - 10*b21 + x121 =L= 0; e157.. - 10*b22 + x123 =L= 0; e158.. - 10*b23 + x125 =L= 0; e159.. - 10*b24 + x127 =L= 0; e160.. - 10*b25 + x129 =L= 0; e161.. - 10*b26 + x131 =L= 0; e162.. - 10*b27 + x133 =L= 0; e163.. - 10*b28 + x135 =L= 0; e164.. - 10*b29 + x137 =L= 0; e165.. - 10*b30 + x139 =L= 0; e166.. - 10*b21 + x122 =L= 0; e167.. - 10*b22 + x124 =L= 0; e168.. - 10*b23 + x126 =L= 0; e169.. - 10*b24 + x128 =L= 0; e170.. - 10*b25 + x130 =L= 0; e171.. - 10*b26 + x132 =L= 0; e172.. - 10*b27 + x134 =L= 0; e173.. - 10*b28 + x136 =L= 0; e174.. - 10*b29 + x138 =L= 0; e175.. - 10*b30 + x140 =L= 0; e176.. - 10*b31 + x141 =L= 0; e177.. - 10*b32 + x143 =L= 0; e178.. - 10*b33 + x145 =L= 0; e179.. - 10*b34 + x147 =L= 0; e180.. - 10*b35 + x149 =L= 0; e181.. - 10*b36 + x151 =L= 0; e182.. - 10*b37 + x153 =L= 0; e183.. - 10*b38 + x155 =L= 0; e184.. - 10*b39 + x157 =L= 0; e185.. - 10*b40 + x159 =L= 0; e186.. - 10*b31 + x142 =L= 0; e187.. - 10*b32 + x144 =L= 0; e188.. - 10*b33 + x146 =L= 0; e189.. - 10*b34 + x148 =L= 0; e190.. - 10*b35 + x150 =L= 0; e191.. - 10*b36 + x152 =L= 0; e192.. - 10*b37 + x154 =L= 0; e193.. - 10*b38 + x156 =L= 0; e194.. - 10*b39 + x158 =L= 0; e195.. - 10*b40 + x160 =L= 0; e196.. - 10*b41 + x161 =L= 0; e197.. - 10*b42 + x163 =L= 0; e198.. - 10*b43 + x165 =L= 0; e199.. - 10*b44 + x167 =L= 0; e200.. - 10*b45 + x169 =L= 0; e201.. - 10*b46 + x171 =L= 0; e202.. - 10*b47 + x173 =L= 0; e203.. - 10*b48 + x175 =L= 0; e204.. - 10*b49 + x177 =L= 0; e205.. - 10*b50 + x179 =L= 0; e206.. - 10*b41 + x162 =L= 0; e207.. - 10*b42 + x164 =L= 0; e208.. - 10*b43 + x166 =L= 0; e209.. - 10*b44 + x168 =L= 0; e210.. - 10*b45 + x170 =L= 0; e211.. - 10*b46 + x172 =L= 0; e212.. - 10*b47 + x174 =L= 0; e213.. - 10*b48 + x176 =L= 0; e214.. - 10*b49 + x178 =L= 0; e215.. - 10*b50 + x180 =L= 0; e216.. x51 - x52 =L= 0; e217.. x52 - x57 =L= 0; e218.. x57 - x61 =L= 0; e219.. x61 - x65 =L= 0; e220.. - x53 - x56 - x58 - x60 - x62 - x64 - x66 - x68 - x69 - x70 - x71 - x72 - x73 - x74 - x75 - x76 - x77 - x78 - x79 - x80 + objvar =E= 0; * set non-default bounds x51.up = 10; x52.up = 10; x53.up = 10; x54.up = 10; x55.up = 10; x56.up = 10; x57.up = 10; x58.up = 10; x59.up = 10; x60.up = 10; x61.up = 10; x62.up = 10; x63.up = 10; x64.up = 10; x65.up = 10; x66.up = 10; x67.up = 10; x68.up = 10; x69.up = 10; x70.up = 10; x71.up = 10; x72.up = 10; x73.up = 10; x74.up = 10; x75.up = 10; x76.up = 10; x77.up = 10; x78.up = 10; x79.up = 10; x80.up = 10; x81.up = 10; x82.up = 10; x83.up = 10; x84.up = 10; x85.up = 10; x86.up = 10; x87.up = 10; x88.up = 10; x89.up = 10; x90.up = 10; x91.up = 10; x92.up = 10; x93.up = 10; x94.up = 10; x95.up = 10; x96.up = 10; x97.up = 10; x98.up = 10; x99.up = 10; x100.up = 10; x101.up = 10; x102.up = 10; x103.up = 10; x104.up = 10; x105.up = 10; x106.up = 10; x107.up = 10; x108.up = 10; x109.up = 10; x110.up = 10; x111.up = 10; x112.up = 10; x113.up = 10; x114.up = 10; x115.up = 10; x116.up = 10; x117.up = 10; x118.up = 10; x119.up = 10; x120.up = 10; x121.up = 10; x122.up = 10; x123.up = 10; x124.up = 10; x125.up = 10; x126.up = 10; x127.up = 10; x128.up = 10; x129.up = 10; x130.up = 10; x131.up = 10; x132.up = 10; x133.up = 10; x134.up = 10; x135.up = 10; x136.up = 10; x137.up = 10; x138.up = 10; x139.up = 10; x140.up = 10; x141.up = 10; x142.up = 10; x143.up = 10; x144.up = 10; x145.up = 10; x146.up = 10; x147.up = 10; x148.up = 10; x149.up = 10; x150.up = 10; x151.up = 10; x152.up = 10; x153.up = 10; x154.up = 10; x155.up = 10; x156.up = 10; x157.up = 10; x158.up = 10; x159.up = 10; x160.up = 10; x161.up = 10; x162.up = 10; x163.up = 10; x164.up = 10; x165.up = 10; x166.up = 10; x167.up = 10; x168.up = 10; x169.up = 10; x170.up = 10; x171.up = 10; x172.up = 10; x173.up = 10; x174.up = 10; x175.up = 10; x176.up = 10; x177.up = 10; x178.up = 10; x179.up = 10; x180.up = 10; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91