MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance p_ball_10b_5p_3d_m
Select 5-points in 3-dimensional balls, such that the l1-distance between all points is minimized. Only one point can be assigned to each ball, and in total there are 10 balls with radius one. This is a big-M formulation.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 44.00150856 (ALPHAECP) 44.00412070 (ANTIGONE) 44.00420628 (BARON) 44.00421667 (BONMIN) 44.00415948 (COUENNE) 44.00421679 (CPLEX) 44.00416942 (GUROBI) 44.00421681 (LINDO) 44.00421408 (SCIP) 44.00421681 (SHOT) |
Referencesⓘ | Kronqvist, Jan and Misener, Ruth, A disjunctive cut strengthening technique for convex MINLP, Tech. Rep., 2020. |
Sourceⓘ | p_ball_10b_5p_3d.gms, contributed by Jan Kronqvist and Ruth Misener |
Applicationⓘ | Geometry |
Added to libraryⓘ | 26 Aug 2020 |
Problem typeⓘ | MBQCP |
#Variablesⓘ | 95 |
#Binary Variablesⓘ | 50 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 15 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 30 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 129 |
#Linear Constraintsⓘ | 79 |
#Quadratic Constraintsⓘ | 50 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 488 |
#Nonlinear Nonzeros in Jacobianⓘ | 150 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 15 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 15 |
#Blocks in Hessian of Lagrangianⓘ | 15 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.0668e-01 |
Maximal coefficientⓘ | 1.5258e+02 |
Infeasibility of initial pointⓘ | 57.28 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 130 6 0 124 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 96 46 50 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 519 369 150 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36 ,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,objvar; Positive Variables x51,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64 ,x65,x66,x67,x68,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81 ,x82,x83,x84,x85,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17 ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34 ,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130; e1.. x51 - x52 - x53 =L= 0; e2.. - x51 + x52 - x53 =L= 0; e3.. x54 - x55 - x56 =L= 0; e4.. - x54 + x55 - x56 =L= 0; e5.. x57 - x58 - x59 =L= 0; e6.. - x57 + x58 - x59 =L= 0; e7.. x51 - x60 - x61 =L= 0; e8.. - x51 + x60 - x61 =L= 0; e9.. x54 - x62 - x63 =L= 0; e10.. - x54 + x62 - x63 =L= 0; e11.. x57 - x64 - x65 =L= 0; e12.. - x57 + x64 - x65 =L= 0; e13.. x51 - x66 - x67 =L= 0; e14.. - x51 + x66 - x67 =L= 0; e15.. x54 - x68 - x69 =L= 0; e16.. - x54 + x68 - x69 =L= 0; e17.. x57 - x70 - x71 =L= 0; e18.. - x57 + x70 - x71 =L= 0; e19.. x51 - x72 - x73 =L= 0; e20.. - x51 + x72 - x73 =L= 0; e21.. x54 - x74 - x75 =L= 0; e22.. - x54 + x74 - x75 =L= 0; e23.. x57 - x76 - x77 =L= 0; e24.. - x57 + x76 - x77 =L= 0; e25.. x52 - x60 - x78 =L= 0; e26.. - x52 + x60 - x78 =L= 0; e27.. x55 - x62 - x79 =L= 0; e28.. - x55 + x62 - x79 =L= 0; e29.. x58 - x64 - x80 =L= 0; e30.. - x58 + x64 - x80 =L= 0; e31.. x52 - x66 - x81 =L= 0; e32.. - x52 + x66 - x81 =L= 0; e33.. x55 - x68 - x82 =L= 0; e34.. - x55 + x68 - x82 =L= 0; e35.. x58 - x70 - x83 =L= 0; e36.. - x58 + x70 - x83 =L= 0; e37.. x52 - x72 - x84 =L= 0; e38.. - x52 + x72 - x84 =L= 0; e39.. x55 - x74 - x85 =L= 0; e40.. - x55 + x74 - x85 =L= 0; e41.. x58 - x76 - x86 =L= 0; e42.. - x58 + x76 - x86 =L= 0; e43.. x60 - x66 - x87 =L= 0; e44.. - x60 + x66 - x87 =L= 0; e45.. x62 - x68 - x88 =L= 0; e46.. - x62 + x68 - x88 =L= 0; e47.. x64 - x70 - x89 =L= 0; e48.. - x64 + x70 - x89 =L= 0; e49.. x60 - x72 - x90 =L= 0; e50.. - x60 + x72 - x90 =L= 0; e51.. x62 - x74 - x91 =L= 0; e52.. - x62 + x74 - x91 =L= 0; e53.. x64 - x76 - x92 =L= 0; e54.. - x64 + x76 - x92 =L= 0; e55.. x66 - x72 - x93 =L= 0; e56.. - x66 + x72 - x93 =L= 0; e57.. x68 - x74 - x94 =L= 0; e58.. - x68 + x74 - x94 =L= 0; e59.. x70 - x76 - x95 =L= 0; e60.. - x70 + x76 - x95 =L= 0; e61.. sqr(3.55441530772447 - x51) + sqr(2.6588399811956 - x54) + sqr( 5.16713392802669 - x57) + 128.415159268527*b1 =L= 129.415159268527; e62.. sqr(8.82094045941646 - x51) + sqr(9.51816335093057 - x54) + sqr( 0.894770759747333 - x57) + 136.27463320812*b2 =L= 137.27463320812; e63.. sqr(6.86229591973038 - x51) + sqr(4.74665709736901 - x54) + sqr( 1.14651582775383 - x57) + 79.4930138069821*b3 =L= 80.4930138069821; e64.. sqr(7.13880287505566 - x51) + sqr(0.923639199248324 - x54) + sqr( 5.06906794010293 - x57) + 124.602073729487*b4 =L= 125.602073729487; e65.. sqr(9.54873475130122 - x51) + sqr(9.730708594994 - x54) + sqr( 0.506682101270036 - x57) + 152.575845479968*b5 =L= 153.575845479968; e66.. sqr(2.60295575976191 - x51) + sqr(9.60525309364094 - x54) + sqr( 5.33059723504087 - x57) + 115.609943222472*b6 =L= 116.609943222472; e67.. sqr(8.7489239697277 - x51) + sqr(6.42418905563567 - x54) + sqr( 6.53764526999883 - x57) + 102.276439512632*b7 =L= 103.276439512632; e68.. sqr(2.98069751112782 - x51) + sqr(1.4913715136506 - x54) + sqr( 2.04987567063475 - x57) + 134.705801750617*b8 =L= 135.705801750617; e69.. sqr(1.65791995565741 - x51) + sqr(6.17322651944292 - x54) + sqr( 7.01412219987569 - x57) + 138.925429422844*b9 =L= 139.925429422844; e70.. sqr(2.41953526971379 - x51) + sqr(1.09500973629707 - x54) + sqr( 2.60189595048839 - x57) + 152.575845479968*b10 =L= 153.575845479968; e71.. b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 + b9 + b10 =E= 1; e72.. sqr(3.55441530772447 - x52) + sqr(2.6588399811956 - x55) + sqr( 5.16713392802669 - x58) + 128.415159268527*b11 =L= 129.415159268527; e73.. sqr(8.82094045941646 - x52) + sqr(9.51816335093057 - x55) + sqr( 0.894770759747333 - x58) + 136.27463320812*b12 =L= 137.27463320812; e74.. sqr(6.86229591973038 - x52) + sqr(4.74665709736901 - x55) + sqr( 1.14651582775383 - x58) + 79.4930138069821*b13 =L= 80.4930138069821; e75.. sqr(7.13880287505566 - x52) + sqr(0.923639199248324 - x55) + sqr( 5.06906794010293 - x58) + 124.602073729487*b14 =L= 125.602073729487; e76.. sqr(9.54873475130122 - x52) + sqr(9.730708594994 - x55) + sqr( 0.506682101270036 - x58) + 152.575845479968*b15 =L= 153.575845479968; e77.. sqr(2.60295575976191 - x52) + sqr(9.60525309364094 - x55) + sqr( 5.33059723504087 - x58) + 115.609943222472*b16 =L= 116.609943222472; e78.. sqr(8.7489239697277 - x52) + sqr(6.42418905563567 - x55) + sqr( 6.53764526999883 - x58) + 102.276439512632*b17 =L= 103.276439512632; e79.. sqr(2.98069751112782 - x52) + sqr(1.4913715136506 - x55) + sqr( 2.04987567063475 - x58) + 134.705801750617*b18 =L= 135.705801750617; e80.. sqr(1.65791995565741 - x52) + sqr(6.17322651944292 - x55) + sqr( 7.01412219987569 - x58) + 138.925429422844*b19 =L= 139.925429422844; e81.. sqr(2.41953526971379 - x52) + sqr(1.09500973629707 - x55) + sqr( 2.60189595048839 - x58) + 152.575845479968*b20 =L= 153.575845479968; e82.. b11 + b12 + b13 + b14 + b15 + b16 + b17 + b18 + b19 + b20 =E= 1; e83.. sqr(3.55441530772447 - x60) + sqr(2.6588399811956 - x62) + sqr( 5.16713392802669 - x64) + 128.415159268527*b21 =L= 129.415159268527; e84.. sqr(8.82094045941646 - x60) + sqr(9.51816335093057 - x62) + sqr( 0.894770759747333 - x64) + 136.27463320812*b22 =L= 137.27463320812; e85.. sqr(6.86229591973038 - x60) + sqr(4.74665709736901 - x62) + sqr( 1.14651582775383 - x64) + 79.4930138069821*b23 =L= 80.4930138069821; e86.. sqr(7.13880287505566 - x60) + sqr(0.923639199248324 - x62) + sqr( 5.06906794010293 - x64) + 124.602073729487*b24 =L= 125.602073729487; e87.. sqr(9.54873475130122 - x60) + sqr(9.730708594994 - x62) + sqr( 0.506682101270036 - x64) + 152.575845479968*b25 =L= 153.575845479968; e88.. sqr(2.60295575976191 - x60) + sqr(9.60525309364094 - x62) + sqr( 5.33059723504087 - x64) + 115.609943222472*b26 =L= 116.609943222472; e89.. sqr(8.7489239697277 - x60) + sqr(6.42418905563567 - x62) + sqr( 6.53764526999883 - x64) + 102.276439512632*b27 =L= 103.276439512632; e90.. sqr(2.98069751112782 - x60) + sqr(1.4913715136506 - x62) + sqr( 2.04987567063475 - x64) + 134.705801750617*b28 =L= 135.705801750617; e91.. sqr(1.65791995565741 - x60) + sqr(6.17322651944292 - x62) + sqr( 7.01412219987569 - x64) + 138.925429422844*b29 =L= 139.925429422844; e92.. sqr(2.41953526971379 - x60) + sqr(1.09500973629707 - x62) + sqr( 2.60189595048839 - x64) + 152.575845479968*b30 =L= 153.575845479968; e93.. b21 + b22 + b23 + b24 + b25 + b26 + b27 + b28 + b29 + b30 =E= 1; e94.. sqr(3.55441530772447 - x66) + sqr(2.6588399811956 - x68) + sqr( 5.16713392802669 - x70) + 128.415159268527*b31 =L= 129.415159268527; e95.. sqr(8.82094045941646 - x66) + sqr(9.51816335093057 - x68) + sqr( 0.894770759747333 - x70) + 136.27463320812*b32 =L= 137.27463320812; e96.. sqr(6.86229591973038 - x66) + sqr(4.74665709736901 - x68) + sqr( 1.14651582775383 - x70) + 79.4930138069821*b33 =L= 80.4930138069821; e97.. sqr(7.13880287505566 - x66) + sqr(0.923639199248324 - x68) + sqr( 5.06906794010293 - x70) + 124.602073729487*b34 =L= 125.602073729487; e98.. sqr(9.54873475130122 - x66) + sqr(9.730708594994 - x68) + sqr( 0.506682101270036 - x70) + 152.575845479968*b35 =L= 153.575845479968; e99.. sqr(2.60295575976191 - x66) + sqr(9.60525309364094 - x68) + sqr( 5.33059723504087 - x70) + 115.609943222472*b36 =L= 116.609943222472; e100.. sqr(8.7489239697277 - x66) + sqr(6.42418905563567 - x68) + sqr( 6.53764526999883 - x70) + 102.276439512632*b37 =L= 103.276439512632; e101.. sqr(2.98069751112782 - x66) + sqr(1.4913715136506 - x68) + sqr( 2.04987567063475 - x70) + 134.705801750617*b38 =L= 135.705801750617; e102.. sqr(1.65791995565741 - x66) + sqr(6.17322651944292 - x68) + sqr( 7.01412219987569 - x70) + 138.925429422844*b39 =L= 139.925429422844; e103.. sqr(2.41953526971379 - x66) + sqr(1.09500973629707 - x68) + sqr( 2.60189595048839 - x70) + 152.575845479968*b40 =L= 153.575845479968; e104.. b31 + b32 + b33 + b34 + b35 + b36 + b37 + b38 + b39 + b40 =E= 1; e105.. sqr(3.55441530772447 - x72) + sqr(2.6588399811956 - x74) + sqr( 5.16713392802669 - x76) + 128.415159268527*b41 =L= 129.415159268527; e106.. sqr(8.82094045941646 - x72) + sqr(9.51816335093057 - x74) + sqr( 0.894770759747333 - x76) + 136.27463320812*b42 =L= 137.27463320812; e107.. sqr(6.86229591973038 - x72) + sqr(4.74665709736901 - x74) + sqr( 1.14651582775383 - x76) + 79.4930138069821*b43 =L= 80.4930138069821; e108.. sqr(7.13880287505566 - x72) + sqr(0.923639199248324 - x74) + sqr( 5.06906794010293 - x76) + 124.602073729487*b44 =L= 125.602073729487; e109.. sqr(9.54873475130122 - x72) + sqr(9.730708594994 - x74) + sqr( 0.506682101270036 - x76) + 152.575845479968*b45 =L= 153.575845479968; e110.. sqr(2.60295575976191 - x72) + sqr(9.60525309364094 - x74) + sqr( 5.33059723504087 - x76) + 115.609943222472*b46 =L= 116.609943222472; e111.. sqr(8.7489239697277 - x72) + sqr(6.42418905563567 - x74) + sqr( 6.53764526999883 - x76) + 102.276439512632*b47 =L= 103.276439512632; e112.. sqr(2.98069751112782 - x72) + sqr(1.4913715136506 - x74) + sqr( 2.04987567063475 - x76) + 134.705801750617*b48 =L= 135.705801750617; e113.. sqr(1.65791995565741 - x72) + sqr(6.17322651944292 - x74) + sqr( 7.01412219987569 - x76) + 138.925429422844*b49 =L= 139.925429422844; e114.. sqr(2.41953526971379 - x72) + sqr(1.09500973629707 - x74) + sqr( 2.60189595048839 - x76) + 152.575845479968*b50 =L= 153.575845479968; e115.. b41 + b42 + b43 + b44 + b45 + b46 + b47 + b48 + b49 + b50 =E= 1; e116.. b1 + b11 + b21 + b31 + b41 =L= 1; e117.. b2 + b12 + b22 + b32 + b42 =L= 1; e118.. b3 + b13 + b23 + b33 + b43 =L= 1; e119.. b4 + b14 + b24 + b34 + b44 =L= 1; e120.. b5 + b15 + b25 + b35 + b45 =L= 1; e121.. b6 + b16 + b26 + b36 + b46 =L= 1; e122.. b7 + b17 + b27 + b37 + b47 =L= 1; e123.. b8 + b18 + b28 + b38 + b48 =L= 1; e124.. b9 + b19 + b29 + b39 + b49 =L= 1; e125.. b10 + b20 + b30 + b40 + b50 =L= 1; e126.. x51 - x52 =L= 0; e127.. x52 - x60 =L= 0; e128.. x60 - x66 =L= 0; e129.. x66 - x72 =L= 0; e130.. - x53 - x56 - x59 - x61 - x63 - x65 - x67 - x69 - x71 - x73 - x75 - x77 - x78 - x79 - x80 - x81 - x82 - x83 - x84 - x85 - x86 - x87 - x88 - x89 - x90 - x91 - x92 - x93 - x94 - x95 + objvar =E= 0; * set non-default bounds x51.up = 10; x52.up = 10; x53.up = 10; x54.up = 10; x55.up = 10; x56.up = 10; x57.up = 10; x58.up = 10; x59.up = 10; x60.up = 10; x61.up = 10; x62.up = 10; x63.up = 10; x64.up = 10; x65.up = 10; x66.up = 10; x67.up = 10; x68.up = 10; x69.up = 10; x70.up = 10; x71.up = 10; x72.up = 10; x73.up = 10; x74.up = 10; x75.up = 10; x76.up = 10; x77.up = 10; x78.up = 10; x79.up = 10; x80.up = 10; x81.up = 10; x82.up = 10; x83.up = 10; x84.up = 10; x85.up = 10; x86.up = 10; x87.up = 10; x88.up = 10; x89.up = 10; x90.up = 10; x91.up = 10; x92.up = 10; x93.up = 10; x94.up = 10; x95.up = 10; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91