MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance p_ball_20b_5p_2d_m
Select 5-points in 2-dimensional balls, such that the l1-distance between all points is minimized. Only one point can be assigned to each ball, and in total there are 20 balls with radius one. This is a big-M formulation.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 2.43661233 (ALPHAECP) 2.43715272 (ANTIGONE) 2.43717506 (BARON) 2.43717505 (BONMIN) 2.43714878 (COUENNE) 2.43717509 (CPLEX) 2.43716742 (GUROBI) 2.43717509 (LINDO) 2.43717362 (SCIP) 2.43717509 (SHOT) |
Referencesⓘ | Kronqvist, Jan and Misener, Ruth, A disjunctive cut strengthening technique for convex MINLP, Tech. Rep., 2020. |
Sourceⓘ | p_ball_20b_5p_2d.gms, contributed by Jan Kronqvist and Ruth Misener |
Applicationⓘ | Geometry |
Added to libraryⓘ | 26 Aug 2020 |
Problem typeⓘ | MBQCP |
#Variablesⓘ | 130 |
#Binary Variablesⓘ | 100 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 10 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 20 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 169 |
#Linear Constraintsⓘ | 69 |
#Quadratic Constraintsⓘ | 100 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 628 |
#Nonlinear Nonzeros in Jacobianⓘ | 200 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 10 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 10 |
#Blocks in Hessian of Lagrangianⓘ | 10 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.3675e-02 |
Maximal coefficientⓘ | 1.3360e+02 |
Infeasibility of initial pointⓘ | 8.815e-05 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 170 6 0 164 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 131 31 100 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 649 449 200 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36 ,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53 ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70 ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87 ,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116 ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129 ,x130,objvar; Positive Variables x101,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111 ,x112,x113,x114,x115,x116,x117,x118,x119,x120,x121,x122,x123,x124 ,x125,x126,x127,x128,x129,x130; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17 ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34 ,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51 ,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68 ,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85 ,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168 ,e169,e170; e1.. x101 - x102 - x103 =L= 0; e2.. - x101 + x102 - x103 =L= 0; e3.. x104 - x105 - x106 =L= 0; e4.. - x104 + x105 - x106 =L= 0; e5.. x101 - x107 - x108 =L= 0; e6.. - x101 + x107 - x108 =L= 0; e7.. x104 - x109 - x110 =L= 0; e8.. - x104 + x109 - x110 =L= 0; e9.. x101 - x111 - x112 =L= 0; e10.. - x101 + x111 - x112 =L= 0; e11.. x104 - x113 - x114 =L= 0; e12.. - x104 + x113 - x114 =L= 0; e13.. x101 - x115 - x116 =L= 0; e14.. - x101 + x115 - x116 =L= 0; e15.. x104 - x117 - x118 =L= 0; e16.. - x104 + x117 - x118 =L= 0; e17.. x102 - x107 - x119 =L= 0; e18.. - x102 + x107 - x119 =L= 0; e19.. x105 - x109 - x120 =L= 0; e20.. - x105 + x109 - x120 =L= 0; e21.. x102 - x111 - x121 =L= 0; e22.. - x102 + x111 - x121 =L= 0; e23.. x105 - x113 - x122 =L= 0; e24.. - x105 + x113 - x122 =L= 0; e25.. x102 - x115 - x123 =L= 0; e26.. - x102 + x115 - x123 =L= 0; e27.. x105 - x117 - x124 =L= 0; e28.. - x105 + x117 - x124 =L= 0; e29.. x107 - x111 - x125 =L= 0; e30.. - x107 + x111 - x125 =L= 0; e31.. x109 - x113 - x126 =L= 0; e32.. - x109 + x113 - x126 =L= 0; e33.. x107 - x115 - x127 =L= 0; e34.. - x107 + x115 - x127 =L= 0; e35.. x109 - x117 - x128 =L= 0; e36.. - x109 + x117 - x128 =L= 0; e37.. x111 - x115 - x129 =L= 0; e38.. - x111 + x115 - x129 =L= 0; e39.. x113 - x117 - x130 =L= 0; e40.. - x113 + x117 - x130 =L= 0; e41.. sqr(0.0236753863366035 - x101) + sqr(0.861938468195851 - x104) + 133.598318045686*b1 =L= 134.598318045686; e42.. sqr(1.43095891437813 - x101) + sqr(5.10831625828775 - x104) + 94.8544563231416*b2 =L= 95.8544563231416; e43.. sqr(1.21379363277567 - x101) + sqr(3.00432848540233 - x104) + 87.4797735261255*b3 =L= 88.4797735261255; e44.. sqr(8.84443217821809 - x101) + sqr(0.384566405581435 - x104) + 103.126413671578*b4 =L= 104.126413671578; e45.. sqr(5.88364087295228 - x101) + sqr(7.44470191338639 - x104) + 95.2983106051005*b5 =L= 96.2983106051005; e46.. sqr(8.07096798042338 - x101) + sqr(5.55715186969177 - x104) + 105.43767414173*b6 =L= 106.43767414173; e47.. sqr(9.60611615222079 - x101) + sqr(3.49008429472371 - x104) + 118.60294806901*b7 =L= 119.60294806901; e48.. sqr(3.8828653966979 - x101) + sqr(5.56627471425883 - x104) + 65.8153811229109*b8 =L= 66.8153811229109; e49.. sqr(3.47709171076729 - x101) + sqr(1.01589173470293 - x104) + 81.404902491826*b9 =L= 82.404902491826; e50.. sqr(3.29737974336435 - x101) + sqr(4.14110922298337 - x104) + 58.2801217051105*b10 =L= 59.2801217051105; e51.. sqr(8.28345883424477 - x101) + sqr(7.50806458757389 - x104) + 133.598318045686*b11 =L= 134.598318045686; e52.. sqr(5.4084966970588 - x101) + sqr(7.74684442267358 - x104) + 93.8794468182122*b12 =L= 94.8794468182122; e53.. sqr(3.43292425314245 - x101) + sqr(7.8299358039566 - x104) + 103.126413671578*b13 =L= 104.126413671578; e54.. sqr(8.35004447905012 - x101) + sqr(1.33263454148094 - x104) + 86.2293028346251*b14 =L= 87.2293028346251; e55.. sqr(2.65420450303518 - x101) + sqr(6.31096321892449 - x104) + 90.5806541970954*b15 =L= 91.5806541970954; e56.. sqr(5.8344315991351 - x101) + sqr(8.56684140863644 - x104) + 112.431237492188*b16 =L= 113.431237492188; e57.. sqr(4.10957657319824 - x101) + sqr(7.8233834211224 - x104) + 95.3905990097055*b17 =L= 96.3905990097055; e58.. sqr(7.39474057003054 - x101) + sqr(2.49738552645804 - x104) + 72.1079233169562*b18 =L= 73.1079233169562; e59.. sqr(6.14221519240217 - x101) + sqr(3.03591203112434 - x104) + 55.1492512196064*b19 =L= 56.1492512196064; e60.. sqr(8.26974385940666 - x101) + sqr(4.22323814320874 - x104) + 97.1056389080134*b20 =L= 98.1056389080134; e61.. b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 + b9 + b10 + b11 + b12 + b13 + b14 + b15 + b16 + b17 + b18 + b19 + b20 =E= 1; e62.. sqr(0.0236753863366035 - x102) + sqr(0.861938468195851 - x105) + 133.598318045686*b21 =L= 134.598318045686; e63.. sqr(1.43095891437813 - x102) + sqr(5.10831625828775 - x105) + 94.8544563231416*b22 =L= 95.8544563231416; e64.. sqr(1.21379363277567 - x102) + sqr(3.00432848540233 - x105) + 87.4797735261255*b23 =L= 88.4797735261255; e65.. sqr(8.84443217821809 - x102) + sqr(0.384566405581435 - x105) + 103.126413671578*b24 =L= 104.126413671578; e66.. sqr(5.88364087295228 - x102) + sqr(7.44470191338639 - x105) + 95.2983106051005*b25 =L= 96.2983106051005; e67.. sqr(8.07096798042338 - x102) + sqr(5.55715186969177 - x105) + 105.43767414173*b26 =L= 106.43767414173; e68.. sqr(9.60611615222079 - x102) + sqr(3.49008429472371 - x105) + 118.60294806901*b27 =L= 119.60294806901; e69.. sqr(3.8828653966979 - x102) + sqr(5.56627471425883 - x105) + 65.8153811229109*b28 =L= 66.8153811229109; e70.. sqr(3.47709171076729 - x102) + sqr(1.01589173470293 - x105) + 81.404902491826*b29 =L= 82.404902491826; e71.. sqr(3.29737974336435 - x102) + sqr(4.14110922298337 - x105) + 58.2801217051105*b30 =L= 59.2801217051105; e72.. sqr(8.28345883424477 - x102) + sqr(7.50806458757389 - x105) + 133.598318045686*b31 =L= 134.598318045686; e73.. sqr(5.4084966970588 - x102) + sqr(7.74684442267358 - x105) + 93.8794468182122*b32 =L= 94.8794468182122; e74.. sqr(3.43292425314245 - x102) + sqr(7.8299358039566 - x105) + 103.126413671578*b33 =L= 104.126413671578; e75.. sqr(8.35004447905012 - x102) + sqr(1.33263454148094 - x105) + 86.2293028346251*b34 =L= 87.2293028346251; e76.. sqr(2.65420450303518 - x102) + sqr(6.31096321892449 - x105) + 90.5806541970954*b35 =L= 91.5806541970954; e77.. sqr(5.8344315991351 - x102) + sqr(8.56684140863644 - x105) + 112.431237492188*b36 =L= 113.431237492188; e78.. sqr(4.10957657319824 - x102) + sqr(7.8233834211224 - x105) + 95.3905990097055*b37 =L= 96.3905990097055; e79.. sqr(7.39474057003054 - x102) + sqr(2.49738552645804 - x105) + 72.1079233169562*b38 =L= 73.1079233169562; e80.. sqr(6.14221519240217 - x102) + sqr(3.03591203112434 - x105) + 55.1492512196064*b39 =L= 56.1492512196064; e81.. sqr(8.26974385940666 - x102) + sqr(4.22323814320874 - x105) + 97.1056389080134*b40 =L= 98.1056389080134; e82.. b21 + b22 + b23 + b24 + b25 + b26 + b27 + b28 + b29 + b30 + b31 + b32 + b33 + b34 + b35 + b36 + b37 + b38 + b39 + b40 =E= 1; e83.. sqr(0.0236753863366035 - x107) + sqr(0.861938468195851 - x109) + 133.598318045686*b41 =L= 134.598318045686; e84.. sqr(1.43095891437813 - x107) + sqr(5.10831625828775 - x109) + 94.8544563231416*b42 =L= 95.8544563231416; e85.. sqr(1.21379363277567 - x107) + sqr(3.00432848540233 - x109) + 87.4797735261255*b43 =L= 88.4797735261255; e86.. sqr(8.84443217821809 - x107) + sqr(0.384566405581435 - x109) + 103.126413671578*b44 =L= 104.126413671578; e87.. sqr(5.88364087295228 - x107) + sqr(7.44470191338639 - x109) + 95.2983106051005*b45 =L= 96.2983106051005; e88.. sqr(8.07096798042338 - x107) + sqr(5.55715186969177 - x109) + 105.43767414173*b46 =L= 106.43767414173; e89.. sqr(9.60611615222079 - x107) + sqr(3.49008429472371 - x109) + 118.60294806901*b47 =L= 119.60294806901; e90.. sqr(3.8828653966979 - x107) + sqr(5.56627471425883 - x109) + 65.8153811229109*b48 =L= 66.8153811229109; e91.. sqr(3.47709171076729 - x107) + sqr(1.01589173470293 - x109) + 81.404902491826*b49 =L= 82.404902491826; e92.. sqr(3.29737974336435 - x107) + sqr(4.14110922298337 - x109) + 58.2801217051105*b50 =L= 59.2801217051105; e93.. sqr(8.28345883424477 - x107) + sqr(7.50806458757389 - x109) + 133.598318045686*b51 =L= 134.598318045686; e94.. sqr(5.4084966970588 - x107) + sqr(7.74684442267358 - x109) + 93.8794468182122*b52 =L= 94.8794468182122; e95.. sqr(3.43292425314245 - x107) + sqr(7.8299358039566 - x109) + 103.126413671578*b53 =L= 104.126413671578; e96.. sqr(8.35004447905012 - x107) + sqr(1.33263454148094 - x109) + 86.2293028346251*b54 =L= 87.2293028346251; e97.. sqr(2.65420450303518 - x107) + sqr(6.31096321892449 - x109) + 90.5806541970954*b55 =L= 91.5806541970954; e98.. sqr(5.8344315991351 - x107) + sqr(8.56684140863644 - x109) + 112.431237492188*b56 =L= 113.431237492188; e99.. sqr(4.10957657319824 - x107) + sqr(7.8233834211224 - x109) + 95.3905990097055*b57 =L= 96.3905990097055; e100.. sqr(7.39474057003054 - x107) + sqr(2.49738552645804 - x109) + 72.1079233169562*b58 =L= 73.1079233169562; e101.. sqr(6.14221519240217 - x107) + sqr(3.03591203112434 - x109) + 55.1492512196064*b59 =L= 56.1492512196064; e102.. sqr(8.26974385940666 - x107) + sqr(4.22323814320874 - x109) + 97.1056389080134*b60 =L= 98.1056389080134; e103.. b41 + b42 + b43 + b44 + b45 + b46 + b47 + b48 + b49 + b50 + b51 + b52 + b53 + b54 + b55 + b56 + b57 + b58 + b59 + b60 =E= 1; e104.. sqr(0.0236753863366035 - x111) + sqr(0.861938468195851 - x113) + 133.598318045686*b61 =L= 134.598318045686; e105.. sqr(1.43095891437813 - x111) + sqr(5.10831625828775 - x113) + 94.8544563231416*b62 =L= 95.8544563231416; e106.. sqr(1.21379363277567 - x111) + sqr(3.00432848540233 - x113) + 87.4797735261255*b63 =L= 88.4797735261255; e107.. sqr(8.84443217821809 - x111) + sqr(0.384566405581435 - x113) + 103.126413671578*b64 =L= 104.126413671578; e108.. sqr(5.88364087295228 - x111) + sqr(7.44470191338639 - x113) + 95.2983106051005*b65 =L= 96.2983106051005; e109.. sqr(8.07096798042338 - x111) + sqr(5.55715186969177 - x113) + 105.43767414173*b66 =L= 106.43767414173; e110.. sqr(9.60611615222079 - x111) + sqr(3.49008429472371 - x113) + 118.60294806901*b67 =L= 119.60294806901; e111.. sqr(3.8828653966979 - x111) + sqr(5.56627471425883 - x113) + 65.8153811229109*b68 =L= 66.8153811229109; e112.. sqr(3.47709171076729 - x111) + sqr(1.01589173470293 - x113) + 81.404902491826*b69 =L= 82.404902491826; e113.. sqr(3.29737974336435 - x111) + sqr(4.14110922298337 - x113) + 58.2801217051105*b70 =L= 59.2801217051105; e114.. sqr(8.28345883424477 - x111) + sqr(7.50806458757389 - x113) + 133.598318045686*b71 =L= 134.598318045686; e115.. sqr(5.4084966970588 - x111) + sqr(7.74684442267358 - x113) + 93.8794468182122*b72 =L= 94.8794468182122; e116.. sqr(3.43292425314245 - x111) + sqr(7.8299358039566 - x113) + 103.126413671578*b73 =L= 104.126413671578; e117.. sqr(8.35004447905012 - x111) + sqr(1.33263454148094 - x113) + 86.2293028346251*b74 =L= 87.2293028346251; e118.. sqr(2.65420450303518 - x111) + sqr(6.31096321892449 - x113) + 90.5806541970954*b75 =L= 91.5806541970954; e119.. sqr(5.8344315991351 - x111) + sqr(8.56684140863644 - x113) + 112.431237492188*b76 =L= 113.431237492188; e120.. sqr(4.10957657319824 - x111) + sqr(7.8233834211224 - x113) + 95.3905990097055*b77 =L= 96.3905990097055; e121.. sqr(7.39474057003054 - x111) + sqr(2.49738552645804 - x113) + 72.1079233169562*b78 =L= 73.1079233169562; e122.. sqr(6.14221519240217 - x111) + sqr(3.03591203112434 - x113) + 55.1492512196064*b79 =L= 56.1492512196064; e123.. sqr(8.26974385940666 - x111) + sqr(4.22323814320874 - x113) + 97.1056389080134*b80 =L= 98.1056389080134; e124.. b61 + b62 + b63 + b64 + b65 + b66 + b67 + b68 + b69 + b70 + b71 + b72 + b73 + b74 + b75 + b76 + b77 + b78 + b79 + b80 =E= 1; e125.. sqr(0.0236753863366035 - x115) + sqr(0.861938468195851 - x117) + 133.598318045686*b81 =L= 134.598318045686; e126.. sqr(1.43095891437813 - x115) + sqr(5.10831625828775 - x117) + 94.8544563231416*b82 =L= 95.8544563231416; e127.. sqr(1.21379363277567 - x115) + sqr(3.00432848540233 - x117) + 87.4797735261255*b83 =L= 88.4797735261255; e128.. sqr(8.84443217821809 - x115) + sqr(0.384566405581435 - x117) + 103.126413671578*b84 =L= 104.126413671578; e129.. sqr(5.88364087295228 - x115) + sqr(7.44470191338639 - x117) + 95.2983106051005*b85 =L= 96.2983106051005; e130.. sqr(8.07096798042338 - x115) + sqr(5.55715186969177 - x117) + 105.43767414173*b86 =L= 106.43767414173; e131.. sqr(9.60611615222079 - x115) + sqr(3.49008429472371 - x117) + 118.60294806901*b87 =L= 119.60294806901; e132.. sqr(3.8828653966979 - x115) + sqr(5.56627471425883 - x117) + 65.8153811229109*b88 =L= 66.8153811229109; e133.. sqr(3.47709171076729 - x115) + sqr(1.01589173470293 - x117) + 81.404902491826*b89 =L= 82.404902491826; e134.. sqr(3.29737974336435 - x115) + sqr(4.14110922298337 - x117) + 58.2801217051105*b90 =L= 59.2801217051105; e135.. sqr(8.28345883424477 - x115) + sqr(7.50806458757389 - x117) + 133.598318045686*b91 =L= 134.598318045686; e136.. sqr(5.4084966970588 - x115) + sqr(7.74684442267358 - x117) + 93.8794468182122*b92 =L= 94.8794468182122; e137.. sqr(3.43292425314245 - x115) + sqr(7.8299358039566 - x117) + 103.126413671578*b93 =L= 104.126413671578; e138.. sqr(8.35004447905012 - x115) + sqr(1.33263454148094 - x117) + 86.2293028346251*b94 =L= 87.2293028346251; e139.. sqr(2.65420450303518 - x115) + sqr(6.31096321892449 - x117) + 90.5806541970954*b95 =L= 91.5806541970954; e140.. sqr(5.8344315991351 - x115) + sqr(8.56684140863644 - x117) + 112.431237492188*b96 =L= 113.431237492188; e141.. sqr(4.10957657319824 - x115) + sqr(7.8233834211224 - x117) + 95.3905990097055*b97 =L= 96.3905990097055; e142.. sqr(7.39474057003054 - x115) + sqr(2.49738552645804 - x117) + 72.1079233169562*b98 =L= 73.1079233169562; e143.. sqr(6.14221519240217 - x115) + sqr(3.03591203112434 - x117) + 55.1492512196064*b99 =L= 56.1492512196064; e144.. sqr(8.26974385940666 - x115) + sqr(4.22323814320874 - x117) + 97.1056389080134*b100 =L= 98.1056389080134; e145.. b81 + b82 + b83 + b84 + b85 + b86 + b87 + b88 + b89 + b90 + b91 + b92 + b93 + b94 + b95 + b96 + b97 + b98 + b99 + b100 =E= 1; e146.. b1 + b21 + b41 + b61 + b81 =L= 1; e147.. b2 + b22 + b42 + b62 + b82 =L= 1; e148.. b3 + b23 + b43 + b63 + b83 =L= 1; e149.. b4 + b24 + b44 + b64 + b84 =L= 1; e150.. b5 + b25 + b45 + b65 + b85 =L= 1; e151.. b6 + b26 + b46 + b66 + b86 =L= 1; e152.. b7 + b27 + b47 + b67 + b87 =L= 1; e153.. b8 + b28 + b48 + b68 + b88 =L= 1; e154.. b9 + b29 + b49 + b69 + b89 =L= 1; e155.. b10 + b30 + b50 + b70 + b90 =L= 1; e156.. b11 + b31 + b51 + b71 + b91 =L= 1; e157.. b12 + b32 + b52 + b72 + b92 =L= 1; e158.. b13 + b33 + b53 + b73 + b93 =L= 1; e159.. b14 + b34 + b54 + b74 + b94 =L= 1; e160.. b15 + b35 + b55 + b75 + b95 =L= 1; e161.. b16 + b36 + b56 + b76 + b96 =L= 1; e162.. b17 + b37 + b57 + b77 + b97 =L= 1; e163.. b18 + b38 + b58 + b78 + b98 =L= 1; e164.. b19 + b39 + b59 + b79 + b99 =L= 1; e165.. b20 + b40 + b60 + b80 + b100 =L= 1; e166.. x101 - x102 =L= 0; e167.. x102 - x107 =L= 0; e168.. x107 - x111 =L= 0; e169.. x111 - x115 =L= 0; e170.. - x103 - x106 - x108 - x110 - x112 - x114 - x116 - x118 - x119 - x120 - x121 - x122 - x123 - x124 - x125 - x126 - x127 - x128 - x129 - x130 + objvar =E= 0; * set non-default bounds x101.up = 10; x102.up = 10; x103.up = 10; x104.up = 10; x105.up = 10; x106.up = 10; x107.up = 10; x108.up = 10; x109.up = 10; x110.up = 10; x111.up = 10; x112.up = 10; x113.up = 10; x114.up = 10; x115.up = 10; x116.up = 10; x117.up = 10; x118.up = 10; x119.up = 10; x120.up = 10; x121.up = 10; x122.up = 10; x123.up = 10; x124.up = 10; x125.up = 10; x126.up = 10; x127.up = 10; x128.up = 10; x129.up = 10; x130.up = 10; * set non-default levels b13.l = 1; b25.l = 1; b57.l = 1; b76.l = 1; b92.l = 1; x101.l = 4.42317283955211; x102.l = 5.03240021704025; x103.l = 0.609227377488138; x104.l = 7.96948572261155; x105.l = 7.96948572261155; x107.l = 5.03240021704025; x108.l = 0.609227377488138; x109.l = 7.96948572261155; x111.l = 5.03240021704025; x112.l = 0.609227377488136; x113.l = 7.96948572261155; x115.l = 5.03240021704025; x116.l = 0.609227377488136; x117.l = 7.96948572261155; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91