MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance pooling_adhya3stp
STP formulation of pooling problem. Explicitly added RLT constraints were removed from the original formulation of Alfaki and Haugland.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -561.04468810 (ANTIGONE) -561.04470600 (BARON) -561.04469620 (COUENNE) -561.04468920 (GUROBI) -561.04468790 (LINDO) -561.04468790 (SCIP) |
Referencesⓘ | Adhya, Nilanjan, Tawarmalani, Mohit, and Sahinidis, Nikolaos V., A Lagrangian Approach to the Pooling Problem, Industrial & Engineering Chemistry Research, 38:5, 1999, 1956-1972. Alfaki, Mohammed and Haugland, Dag, Strong formulations for the pooling problem, Journal of Global Optimization, 56:3, 2013, 897-916. |
Sourceⓘ | Adhya3.gms from Standard Pooling Problem Instances |
Applicationⓘ | Pooling problem |
Added to libraryⓘ | 12 Sep 2017 |
Problem typeⓘ | QCP |
#Variablesⓘ | 72 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 40 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 31 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 109 |
#Linear Constraintsⓘ | 45 |
#Quadratic Constraintsⓘ | 64 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 486 |
#Nonlinear Nonzeros in Jacobianⓘ | 128 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 128 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 6 |
Minimal blocksize in Hessian of Lagrangianⓘ | 6 |
Maximal blocksize in Hessian of Lagrangianⓘ | 7 |
Average blocksize in Hessian of Lagrangianⓘ | 6.666667 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-01 |
Maximal coefficientⓘ | 2.3000e+01 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 110 71 0 39 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 73 73 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 518 390 128 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,x70,x71,x72,x73; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68 ,x69,x70,x71,x72,x73; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110; e1.. objvar + 9*x42 + 18*x43 + 8*x44 + 3*x45 + 13*x46 + 22*x47 + 12*x48 + 7*x49 + 14*x50 + 23*x51 + 13*x52 + 8*x53 + 6*x54 + 15*x55 + 5*x56 + 11*x58 + 20*x59 + 10*x60 + 5*x61 + 11*x62 + 20*x63 + 10*x64 + 5*x65 + 7*x66 + 16*x67 + 6*x68 + x69 + 5*x70 + 14*x71 + 4*x72 - x73 =E= 0; e2.. x42 + x43 + x44 + x45 =L= 75; e3.. x46 + x47 + x48 + x49 =L= 75; e4.. x50 + x51 + x52 + x53 =L= 75; e5.. x54 + x55 + x56 + x57 =L= 75; e6.. x58 + x59 + x60 + x61 =L= 75; e7.. x62 + x63 + x64 + x65 =L= 75; e8.. x66 + x67 + x68 + x69 =L= 75; e9.. x70 + x71 + x72 + x73 =L= 75; e10.. x42 + x43 + x44 + x45 + x46 + x47 + x48 + x49 =L= 75; e11.. x50 + x51 + x52 + x53 + x54 + x55 + x56 + x57 + x58 + x59 + x60 + x61 =L= 75; e12.. x62 + x63 + x64 + x65 + x66 + x67 + x68 + x69 + x70 + x71 + x72 + x73 =L= 75; e13.. x42 + x46 + x50 + x54 + x58 + x62 + x66 + x70 =L= 10; e14.. x43 + x47 + x51 + x55 + x59 + x63 + x67 + x71 =L= 25; e15.. x44 + x48 + x52 + x56 + x60 + x64 + x68 + x72 =L= 30; e16.. x45 + x49 + x53 + x57 + x61 + x65 + x69 + x73 =L= 10; e17.. - 2*x42 + x46 + x50 - 2*x58 - 1.2*x62 + 2*x66 =L= 0; e18.. 3*x42 - 2*x46 + 2.5*x50 - 0.3*x58 - 0.3*x62 - 2*x66 =L= 0; e19.. 0.75*x42 - 0.25*x46 - 0.25*x50 - 0.25*x54 + 0.75*x58 + 0.75*x62 - 1.55*x66 - 0.25*x70 =L= 0; e20.. - 0.25*x42 + 1.25*x46 + 0.15*x50 + 0.25*x54 + 0.85*x58 + 2.75*x62 + 2.15*x66 + 0.25*x70 =L= 0; e21.. - x42 - 2*x46 + x50 - 3*x54 - 3*x58 + 0.0999999999999996*x62 - 2.5*x66 - x70 =L= 0; e22.. 4*x42 - x46 + 5*x50 - x54 + 2*x58 - 2*x62 - 2.1*x66 - 3*x70 =L= 0; e23.. - 3*x43 - x55 - 3*x59 - 2.2*x63 + x67 - x71 =L= 0; e24.. 3.5*x43 - 1.5*x47 + 3*x51 + 0.5*x55 + 0.2*x59 + 0.2*x63 - 1.5*x67 + 0.5*x71 =L= 0; e25.. 0.5*x43 - 0.5*x47 - 0.5*x51 - 0.5*x55 + 0.5*x59 + 0.5*x63 - 1.8*x67 - 0.5*x71 =L= 0; e26.. - x43 + 0.5*x47 - 0.6*x51 - 0.5*x55 + 0.1*x59 + 2*x63 + 1.4*x67 - 0.5*x71 =L= 0; e27.. - 2*x43 - 3*x47 - 4*x55 - 4*x59 - 0.9*x63 - 3.5*x67 - 2*x71 =L= 0; e28.. 3*x43 - 2*x47 + 4*x51 - 2*x55 + x59 - 3*x63 - 3.1*x67 - 4*x71 =L= 0; e29.. - 0.5*x44 + 2.5*x48 + 2.5*x52 + 1.5*x56 - 0.5*x60 + 0.3*x64 + 3.5*x68 + 1.5*x72 =L= 0; e30.. 0.5*x44 - 4.5*x48 - 2.5*x56 - 2.8*x60 - 2.8*x64 - 4.5*x68 - 2.5*x72 =L= 0; e31.. 0.1*x44 - 0.9*x48 - 0.9*x52 - 0.9*x56 + 0.1*x60 + 0.1*x64 - 2.2*x68 - 0.9*x72 =L= 0; e32.. - 0.3*x44 + 1.2*x48 + 0.1*x52 + 0.2*x56 + 0.8*x60 + 2.7*x64 + 2.1*x68 + 0.2*x72 =L= 0; e33.. - 2*x44 - 3*x48 - 4*x56 - 4*x60 - 0.9*x64 - 3.5*x68 - 2*x72 =L= 0; e34.. 3*x44 - 2*x48 + 4*x52 - 2*x56 + x60 - 3*x64 - 3.1*x68 - 4*x72 =L= 0; e35.. - 2*x45 + x49 + x53 - 2*x61 - 1.2*x65 + 2*x69 =L= 0; e36.. 2*x45 - 3*x49 + 1.5*x53 - x57 - 1.3*x61 - 1.3*x65 - 3*x69 - x73 =L= 0; e37.. - x49 - x53 - x57 - 2.3*x69 - x73 =L= 0; e38.. - 1.3*x45 + 0.2*x49 - 0.9*x53 - 0.8*x57 - 0.2*x61 + 1.7*x65 + 1.1*x69 - 0.8*x73 =L= 0; e39.. - x45 - 2*x49 + x53 - 3*x57 - 3*x61 + 0.0999999999999996*x65 - 2.5*x69 - x73 =L= 0; e40.. 3*x45 - 2*x49 + 4*x53 - 2*x57 + x61 - 3*x65 - 3.1*x69 - 4*x73 =L= 0; e41.. x22 + x23 =E= 1; e42.. x24 + x25 + x26 =E= 1; e43.. x27 + x28 + x29 =E= 1; e44.. x30 + x31 + x32 + x33 =E= 1; e45.. x34 + x35 + x36 + x37 =E= 1; e46.. x38 + x39 + x40 + x41 =E= 1; e47.. -x22*x10 + x42 =E= 0; e48.. -x22*x11 + x43 =E= 0; e49.. -x22*x12 + x44 =E= 0; e50.. -x22*x13 + x45 =E= 0; e51.. -x23*x10 + x46 =E= 0; e52.. -x23*x11 + x47 =E= 0; e53.. -x23*x12 + x48 =E= 0; e54.. -x23*x13 + x49 =E= 0; e55.. -x24*x14 + x50 =E= 0; e56.. -x24*x15 + x51 =E= 0; e57.. -x24*x16 + x52 =E= 0; e58.. -x24*x17 + x53 =E= 0; e59.. -x25*x14 + x54 =E= 0; e60.. -x25*x15 + x55 =E= 0; e61.. -x25*x16 + x56 =E= 0; e62.. -x25*x17 + x57 =E= 0; e63.. -x26*x14 + x58 =E= 0; e64.. -x26*x15 + x59 =E= 0; e65.. -x26*x16 + x60 =E= 0; e66.. -x26*x17 + x61 =E= 0; e67.. -x27*x18 + x62 =E= 0; e68.. -x27*x19 + x63 =E= 0; e69.. -x27*x20 + x64 =E= 0; e70.. -x27*x21 + x65 =E= 0; e71.. -x28*x18 + x66 =E= 0; e72.. -x28*x19 + x67 =E= 0; e73.. -x28*x20 + x68 =E= 0; e74.. -x28*x21 + x69 =E= 0; e75.. -x29*x18 + x70 =E= 0; e76.. -x29*x19 + x71 =E= 0; e77.. -x29*x20 + x72 =E= 0; e78.. -x29*x21 + x73 =E= 0; e79.. -x30*x2 + x42 =E= 0; e80.. -x31*x2 + x43 =E= 0; e81.. -x32*x2 + x44 =E= 0; e82.. -x33*x2 + x45 =E= 0; e83.. -x30*x3 + x46 =E= 0; e84.. -x31*x3 + x47 =E= 0; e85.. -x32*x3 + x48 =E= 0; e86.. -x33*x3 + x49 =E= 0; e87.. -x34*x4 + x50 =E= 0; e88.. -x35*x4 + x51 =E= 0; e89.. -x36*x4 + x52 =E= 0; e90.. -x37*x4 + x53 =E= 0; e91.. -x34*x5 + x54 =E= 0; e92.. -x35*x5 + x55 =E= 0; e93.. -x36*x5 + x56 =E= 0; e94.. -x37*x5 + x57 =E= 0; e95.. -x34*x6 + x58 =E= 0; e96.. -x35*x6 + x59 =E= 0; e97.. -x36*x6 + x60 =E= 0; e98.. -x37*x6 + x61 =E= 0; e99.. -x38*x7 + x62 =E= 0; e100.. -x39*x7 + x63 =E= 0; e101.. -x40*x7 + x64 =E= 0; e102.. -x41*x7 + x65 =E= 0; e103.. -x38*x8 + x66 =E= 0; e104.. -x39*x8 + x67 =E= 0; e105.. -x40*x8 + x68 =E= 0; e106.. -x41*x8 + x69 =E= 0; e107.. -x38*x9 + x70 =E= 0; e108.. -x39*x9 + x71 =E= 0; e109.. -x40*x9 + x72 =E= 0; e110.. -x41*x9 + x73 =E= 0; * set non-default bounds x2.up = 75; x3.up = 75; x4.up = 75; x5.up = 75; x6.up = 75; x7.up = 75; x8.up = 75; x9.up = 75; x10.up = 10; x11.up = 25; x12.up = 30; x13.up = 10; x14.up = 10; x15.up = 25; x16.up = 30; x17.up = 10; x18.up = 10; x19.up = 25; x20.up = 30; x21.up = 10; x22.up = 1; x23.up = 1; x24.up = 1; x25.up = 1; x26.up = 1; x27.up = 1; x28.up = 1; x29.up = 1; x30.up = 1; x31.up = 1; x32.up = 1; x33.up = 1; x34.up = 1; x35.up = 1; x36.up = 1; x37.up = 1; x38.up = 1; x39.up = 1; x40.up = 1; x41.up = 1; x42.up = 10; x43.up = 25; x44.up = 30; x45.up = 10; x46.up = 10; x47.up = 25; x48.up = 30; x49.up = 10; x50.up = 10; x51.up = 25; x52.up = 30; x53.up = 10; x54.up = 10; x55.up = 25; x56.up = 30; x57.up = 10; x58.up = 10; x59.up = 25; x60.up = 30; x61.up = 10; x62.up = 10; x63.up = 25; x64.up = 30; x65.up = 10; x66.up = 10; x67.up = 25; x68.up = 30; x69.up = 10; x70.up = 10; x71.up = 25; x72.up = 30; x73.up = 10; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91