MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance pooling_adhya4pq
PQ formulation of pooling problem. Explicitly added RLT constraints were removed from the original formulation of Alfaki and Haugland.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -877.64574100 (ANTIGONE) -877.64574090 (BARON) -877.64574010 (COUENNE) -877.64574280 (GUROBI) -877.64573990 (LINDO) -877.64574320 (SCIP) |
Referencesⓘ | Adhya, Nilanjan, Tawarmalani, Mohit, and Sahinidis, Nikolaos V., A Lagrangian Approach to the Pooling Problem, Industrial & Engineering Chemistry Research, 38:5, 1999, 1956-1972. Alfaki, Mohammed and Haugland, Dag, Strong formulations for the pooling problem, Journal of Global Optimization, 56:3, 2013, 897-916. |
Sourceⓘ | Adhya4.gms from Standard Pooling Problem Instances |
Applicationⓘ | Pooling problem |
Added to libraryⓘ | 12 Sep 2017 |
Problem typeⓘ | QCP |
#Variablesⓘ | 58 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 18 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 39 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 77 |
#Linear Constraintsⓘ | 37 |
#Quadratic Constraintsⓘ | 40 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 391 |
#Nonlinear Nonzeros in Jacobianⓘ | 80 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 80 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 2 |
Minimal blocksize in Hessian of Lagrangianⓘ | 9 |
Maximal blocksize in Hessian of Lagrangianⓘ | 9 |
Average blocksize in Hessian of Lagrangianⓘ | 9.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-01 |
Maximal coefficientⓘ | 2.7000e+01 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 78 43 0 35 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 59 59 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 431 351 80 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78; e1.. objvar - 5*x20 + 10*x21 + 15*x22 - 9*x23 - 5*x24 + 3*x25 + 18*x26 + 23*x27 - x28 + 3*x29 + 6*x30 + 21*x31 + 26*x32 + 2*x33 + 6*x34 + 5*x35 + 20*x36 + 25*x37 + x38 + 5*x39 + 4*x40 + 19*x41 + 24*x42 + 4*x44 + 7*x45 + 22*x46 + 27*x47 + 3*x48 + 7*x49 + 5*x50 + 20*x51 + 25*x52 + x53 + 5*x54 + 5*x55 + 20*x56 + 25*x57 + x58 + 5*x59 =E= 0; e2.. x20 + x21 + x22 + x23 + x24 =L= 85; e3.. x25 + x26 + x27 + x28 + x29 =L= 85; e4.. x30 + x31 + x32 + x33 + x34 =L= 85; e5.. x35 + x36 + x37 + x38 + x39 =L= 85; e6.. x40 + x41 + x42 + x43 + x44 =L= 85; e7.. x45 + x46 + x47 + x48 + x49 =L= 85; e8.. x50 + x51 + x52 + x53 + x54 =L= 85; e9.. x55 + x56 + x57 + x58 + x59 =L= 85; e10.. x20 + x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 + x29 + x30 + x31 + x32 + x33 + x34 + x35 + x36 + x37 + x38 + x39 =L= 85; e11.. x40 + x41 + x42 + x43 + x44 + x45 + x46 + x47 + x48 + x49 + x50 + x51 + x52 + x53 + x54 + x55 + x56 + x57 + x58 + x59 =L= 85; e12.. x20 + x25 + x30 + x35 + x40 + x45 + x50 + x55 =L= 15; e13.. x21 + x26 + x31 + x36 + x41 + x46 + x51 + x56 =L= 25; e14.. x22 + x27 + x32 + x37 + x42 + x47 + x52 + x57 =L= 10; e15.. x23 + x28 + x33 + x38 + x43 + x48 + x53 + x58 =L= 20; e16.. x24 + x29 + x34 + x39 + x44 + x49 + x54 + x59 =L= 15; e17.. - 0.7*x20 + 0.2*x25 + 0.3*x35 + 0.4*x40 + 0.3*x50 + 0.2*x55 =L= 0; e18.. 0.2*x20 + 0.1*x25 + 0.2*x30 - 0.5*x35 + 0.1*x40 - 0.6*x45 - 0.2*x50 - 0.0999999999999999*x55 =L= 0; e19.. - 0.0999999999999999*x20 + 0.3*x25 + 0.3*x35 + 0.2*x40 + 0.1*x50 - 0.2*x55 =L= 0; e20.. - 0.7*x20 - 0.0999999999999999*x25 - 0.3*x30 - 0.4*x35 + 0.3*x40 + 0.3*x45 - 0.2*x50 - 0.0999999999999999*x55 =L= 0; e21.. - 0.9*x21 - 0.2*x31 + 0.1*x36 + 0.2*x41 - 0.2*x46 + 0.1*x51 =L= 0; e22.. 0.6*x21 + 0.5*x26 + 0.6*x31 - 0.1*x36 + 0.5*x41 - 0.2*x46 + 0.2*x51 + 0.3*x56 =L= 0; e23.. - 0.5*x21 - 0.1*x26 - 0.4*x31 - 0.1*x36 - 0.2*x41 - 0.4*x46 - 0.3*x51 - 0.6*x56 =L= 0; e24.. - 0.4*x21 + 0.2*x26 - 0.0999999999999999*x36 + 0.6*x41 + 0.6*x46 + 0.1*x51 + 0.2*x56 =L= 0; e25.. - 0.8*x22 + 0.0999999999999999*x27 - 0.1*x32 + 0.2*x37 + 0.3*x42 - 0.1*x47 + 0.2*x52 + 0.0999999999999999*x57 =L= 0; e26.. 0.6*x22 + 0.5*x27 + 0.6*x32 - 0.1*x37 + 0.5*x42 - 0.2*x47 + 0.2*x52 + 0.3*x57 =L= 0; e27.. - 0.6*x22 - 0.2*x27 - 0.5*x32 - 0.2*x37 - 0.3*x42 - 0.5*x47 - 0.4*x52 - 0.7*x57 =L= 0; e28.. - 0.9*x22 - 0.3*x27 - 0.5*x32 - 0.6*x37 + 0.1*x42 + 0.1*x47 - 0.4*x52 - 0.3*x57 =L= 0; e29.. - 0.7*x23 + 0.2*x28 + 0.3*x38 + 0.4*x43 + 0.3*x53 + 0.2*x58 =L= 0; e30.. 0.8*x23 + 0.7*x28 + 0.8*x33 + 0.0999999999999999*x38 + 0.7*x43 + 0.4*x53 + 0.5*x58 =L= 0; e31.. - 0.4*x23 - 0.3*x33 - 0.0999999999999999*x43 - 0.3*x48 - 0.2*x53 - 0.5*x58 =L= 0; e32.. - 0.6*x23 - 0.2*x33 - 0.3*x38 + 0.4*x43 + 0.4*x48 - 0.1*x53 =L= 0; e33.. - 1.1*x24 - 0.2*x29 - 0.4*x34 - 0.1*x39 - 0.4*x49 - 0.1*x54 - 0.2*x59 =L= 0; e34.. - 0.0999999999999999*x29 - 0.7*x39 - 0.0999999999999999*x44 - 0.8*x49 - 0.4*x54 - 0.3*x59 =L= 0; e35.. - 0.7*x24 - 0.3*x29 - 0.6*x34 - 0.3*x39 - 0.4*x44 - 0.6*x49 - 0.5*x54 - 0.8*x59 =L= 0; e36.. - 1.5*x24 - 0.9*x29 - 1.1*x34 - 1.2*x39 - 0.5*x44 - 0.5*x49 - x54 - 0.9*x59 =L= 0; e37.. x2 + x3 + x4 + x5 =E= 1; e38.. x6 + x7 + x8 + x9 =E= 1; e39.. -x2*x10 + x20 =E= 0; e40.. -x2*x11 + x21 =E= 0; e41.. -x2*x12 + x22 =E= 0; e42.. -x2*x13 + x23 =E= 0; e43.. -x2*x14 + x24 =E= 0; e44.. -x3*x10 + x25 =E= 0; e45.. -x3*x11 + x26 =E= 0; e46.. -x3*x12 + x27 =E= 0; e47.. -x3*x13 + x28 =E= 0; e48.. -x3*x14 + x29 =E= 0; e49.. -x4*x10 + x30 =E= 0; e50.. -x4*x11 + x31 =E= 0; e51.. -x4*x12 + x32 =E= 0; e52.. -x4*x13 + x33 =E= 0; e53.. -x4*x14 + x34 =E= 0; e54.. -x5*x10 + x35 =E= 0; e55.. -x5*x11 + x36 =E= 0; e56.. -x5*x12 + x37 =E= 0; e57.. -x5*x13 + x38 =E= 0; e58.. -x5*x14 + x39 =E= 0; e59.. -x6*x15 + x40 =E= 0; e60.. -x6*x16 + x41 =E= 0; e61.. -x6*x17 + x42 =E= 0; e62.. -x6*x18 + x43 =E= 0; e63.. -x6*x19 + x44 =E= 0; e64.. -x7*x15 + x45 =E= 0; e65.. -x7*x16 + x46 =E= 0; e66.. -x7*x17 + x47 =E= 0; e67.. -x7*x18 + x48 =E= 0; e68.. -x7*x19 + x49 =E= 0; e69.. -x8*x15 + x50 =E= 0; e70.. -x8*x16 + x51 =E= 0; e71.. -x8*x17 + x52 =E= 0; e72.. -x8*x18 + x53 =E= 0; e73.. -x8*x19 + x54 =E= 0; e74.. -x9*x15 + x55 =E= 0; e75.. -x9*x16 + x56 =E= 0; e76.. -x9*x17 + x57 =E= 0; e77.. -x9*x18 + x58 =E= 0; e78.. -x9*x19 + x59 =E= 0; * set non-default bounds x2.up = 1; x3.up = 1; x4.up = 1; x5.up = 1; x6.up = 1; x7.up = 1; x8.up = 1; x9.up = 1; x10.up = 15; x11.up = 25; x12.up = 10; x13.up = 20; x14.up = 15; x15.up = 15; x16.up = 25; x17.up = 10; x18.up = 20; x19.up = 15; x20.up = 15; x21.up = 25; x22.up = 10; x23.up = 20; x24.up = 15; x25.up = 15; x26.up = 25; x27.up = 10; x28.up = 20; x29.up = 15; x30.up = 15; x31.up = 25; x32.up = 10; x33.up = 20; x34.up = 15; x35.up = 15; x36.up = 25; x37.up = 10; x38.up = 20; x39.up = 15; x40.up = 15; x41.up = 25; x42.up = 10; x43.up = 20; x44.up = 15; x45.up = 15; x46.up = 25; x47.up = 10; x48.up = 20; x49.up = 15; x50.up = 15; x51.up = 25; x52.up = 10; x53.up = 20; x54.up = 15; x55.up = 15; x56.up = 25; x57.up = 10; x58.up = 20; x59.up = 15; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91