MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance pooling_haverly1pq
PQ formulation of pooling problem. Explicitly added RLT constraints were removed from the original formulation of Alfaki and Haugland.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -400.00000040 (ANTIGONE) -400.00000080 (BARON) -400.00000000 (COUENNE) -400.00000000 (GUROBI) -400.00000000 (LINDO) -400.00000190 (SCIP) |
Referencesⓘ | Haverly, C A, Studies of the Behavior of Recursion for the Pooling Problem, ACM SIGMAP Bull, 25, 1978, 19-28. Alfaki, Mohammed and Haugland, Dag, Strong formulations for the pooling problem, Journal of Global Optimization, 56:3, 2013, 897-916. |
Sourceⓘ | Haverly1.gms from Standard Pooling Problem Instances |
Applicationⓘ | Pooling problem |
Added to libraryⓘ | 12 Sep 2017 |
Problem typeⓘ | QCP |
#Variablesⓘ | 10 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 4 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 6 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 13 |
#Linear Constraintsⓘ | 9 |
#Quadratic Constraintsⓘ | 4 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 36 |
#Nonlinear Nonzeros in Jacobianⓘ | 8 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 8 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 4 |
Maximal blocksize in Hessian of Lagrangianⓘ | 4 |
Average blocksize in Hessian of Lagrangianⓘ | 4.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.0000e-01 |
Maximal coefficientⓘ | 9.0000e+00 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 14 6 0 8 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 11 11 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 43 35 8 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14; e1.. objvar - x4 + 5*x5 + 3*x8 + 9*x9 - 7*x10 - x11 =E= 0; e2.. x8 + x9 =L= 300; e3.. x10 + x11 =L= 300; e4.. x4 + x5 =L= 300; e5.. x8 + x9 + x10 + x11 =L= 300; e6.. x4 + x8 + x10 =L= 100; e7.. x5 + x9 + x11 =L= 200; e8.. - 0.5*x4 + 0.5*x8 - 1.5*x10 =L= 0; e9.. 0.5*x5 + 1.5*x9 - 0.5*x11 =L= 0; e10.. x2 + x3 =E= 1; e11.. -x2*x6 + x8 =E= 0; e12.. -x2*x7 + x9 =E= 0; e13.. -x3*x6 + x10 =E= 0; e14.. -x3*x7 + x11 =E= 0; * set non-default bounds x2.up = 1; x3.up = 1; x4.up = 100; x5.up = 200; x6.up = 100; x7.up = 200; x8.up = 100; x9.up = 200; x10.up = 100; x11.up = 200; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91