MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance prob02

Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
112235.00000000 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
112235.00000000 (ANTIGONE)
112235.00000000 (BARON)
112235.00000000 (COUENNE)
112235.00000000 (CPLEX)
112235.00000000 (GUROBI)
112235.00000000 (LINDO)
112235.00000000 (SCIP)
112235.00000000 (SHOT)
References Harjunkoski, Iiro, Westerlund, Tapio, Pörn, Ray, and Skrifvars, Hans, Different Transformations for Solving Non-Convex Trim Loss Problems by MINLP, European Journal of Operational Research, 105:3, 1998, 594-603.
Westerlund, Tapio and Lundqvist, Kurt, Alpha-ECP, Version 5.01 An Interactive MINLP-Solver Based on the Extended Cutting Plane Method, Tech. Rep. 01-178-A, Process Design Laboratory at Abo University, 2001.
Source Example models from AlphaECP
Added to library 02 Jul 2003
Problem type IQCP
#Variables 6
#Binary Variables 0
#Integer Variables 6
#Nonlinear Variables 6
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 6
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 6
#Nonlinear Nonzeros in Objective 0
#Constraints 8
#Linear Constraints 3
#Quadratic Constraints 5
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 25
#Nonlinear Nonzeros in Jacobian 10
#Nonzeros in (Upper-Left) Hessian of Lagrangian 10
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 6
Maximal blocksize in Hessian of Lagrangian 6
Average blocksize in Hessian of Lagrangian 6.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 8.0000e+03
Infeasibility of initial point 0
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          9        1        1        7        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          7        1        0        6        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         32       22       10        0
*
*  Solve m using MINLP minimizing objvar;


Variables  i1,i2,i3,i4,i5,i6,objvar;

Integer Variables  i1,i2,i3,i4,i5,i6;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9;


e1..  - 8000*i1 + 330*i2 + 360*i3 + 370*i4 + 415*i5 + 435*i6 + objvar =E= 0;

e2..    330*i2 + 360*i3 + 370*i4 + 415*i5 + 435*i6 =L= 8000;

e3..    330*i2 + 360*i3 + 370*i4 + 415*i5 + 435*i6 =G= 7700;

e4..    i2 + i3 + i4 + i5 + i6 =L= 20;

e5.. -i1*i2 =L= -60;

e6.. -i1*i3 =L= -30;

e7.. -i1*i4 =L= -75;

e8.. -i1*i5 =L= -30;

e9.. -i1*i6 =L= -100;

* set non-default bounds
i1.lo = 1; i1.up = 100;
i2.lo = 1; i2.up = 100;
i3.lo = 1; i3.up = 100;
i4.lo = 1; i4.up = 100;
i5.lo = 1; i5.up = 100;
i6.lo = 1; i6.up = 100;

* set non-default levels
i1.l = 15;
i2.l = 4;
i3.l = 2;
i4.l = 5;
i5.l = 2;
i6.l = 7;
objvar.l = 112235;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0