MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance prob03

Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
10.00000000 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
10.00000000 (ANTIGONE)
10.00000000 (BARON)
10.00000000 (COUENNE)
10.00000000 (CPLEX)
10.00000000 (GUROBI)
10.00000000 (LINDO)
10.00000000 (SCIP)
10.00000000 (SHOT)
References Westerlund, Tapio and Lundqvist, Kurt, Alpha-ECP, Version 5.01 An Interactive MINLP-Solver Based on the Extended Cutting Plane Method, Tech. Rep. 01-178-A, Process Design Laboratory at Abo University, 2001.
Still, Claus and Westerlund, Tapio, Extended Cutting Plane Algorithm. In Floudas, C A and Paradalos, Panos M, Encyclopedia of Optimization, Kluwer Academic Press, 2001, 593-601.
Source Example models from AlphaECP
Added to library 02 Jul 2003
Problem type IQCP
#Variables 2
#Binary Variables 0
#Integer Variables 2
#Nonlinear Variables 2
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 2
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 2
#Nonlinear Nonzeros in Objective 0
#Constraints 1
#Linear Constraints 0
#Quadratic Constraints 1
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 2
#Nonlinear Nonzeros in Jacobian 2
#Nonzeros in (Upper-Left) Hessian of Lagrangian 2
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 2.0000e+00
Maximal coefficient 3.0000e+00
Infeasibility of initial point 2.5
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          2        1        0        1        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          3        1        0        2        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*          5        3        2        0
*
*  Solve m using MINLP minimizing objvar;


Variables  i1,i2,objvar;

Integer Variables  i1,i2;

Equations  e1,e2;


e1..  - 3*i1 - 2*i2 + objvar =E= 0;

e2.. -i1*i2 =L= -3.5;

* set non-default bounds
i1.lo = 1; i1.up = 5;
i2.lo = 1; i2.up = 5;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0