MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance prob09

Formats ams gms mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
-0.00000000 p1 ( gdx sol )
(infeas: 1e-13)
Other points (infeas > 1e-08)  
Dual Bounds
-0.00000000 (ANTIGONE)
-0.00000000 (BARON)
-0.00000000 (COUENNE)
-0.00000000 (LINDO)
-0.00000000 (SCIP)
References Westerlund, Tapio and Lundqvist, Kurt, Alpha-ECP, Version 5.01 An Interactive MINLP-Solver Based on the Extended Cutting Plane Method, Tech. Rep. 01-178-A, Process Design Laboratory at Abo University, 2001.
Source Example models from AlphaECP
Added to library 31 Jul 2001
Problem type NLP
#Variables 3
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 2
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 1
#Nonlinear Nonzeros in Objective 0
#Constraints 1
#Linear Constraints 0
#Quadratic Constraints 0
#Polynomial Constraints 1
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 3
#Nonlinear Nonzeros in Jacobian 2
#Nonzeros in (Upper-Left) Hessian of Lagrangian 4
#Nonzeros in Diagonal of Hessian of Lagrangian 2
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 1.0000e+02
Infeasibility of initial point 7.996e-19
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          1        1        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          3        3        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*          3        1        2        0
*
*  Solve m using NLP minimizing objvar;


Variables  objvar,x2,x3;

Equations  e1;


e1.. 100*sqr(x3 - sqr(x2)) + sqr(1 - x2) - objvar =E= 0;

* set non-default bounds
objvar.lo = -100; objvar.up = 100;
x2.lo = -2; x2.up = 2;
x3.lo = -2; x3.up = 2;

* set non-default levels
objvar.l = 2.28067255148468E-6;
x2.l = 0.999139149741104;
x3.l = 0.998154959548312;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0