MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Removed Instance pump
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | |
Referencesⓘ | Westerlund, Tapio, Petterson, Frank, and Grossmann, I E, Optimization of Pump Configurations as a MINLP Problem, Computers and Chemical Engineering, 18:9, 1994, 845-858. |
Sourceⓘ | GAMS Model Library model pump |
Applicationⓘ | Pump configuration problem |
Added to libraryⓘ | 01 May 2001 |
Removed from libraryⓘ | 04 Mar 2014 |
Removed becauseⓘ | Duplicate of ex1252a |
Problem typeⓘ | MINLP |
#Variablesⓘ | 24 |
#Binary Variablesⓘ | 3 |
#Integer Variablesⓘ | 6 |
#Nonlinear Variablesⓘ | 21 |
#Nonlinear Binary Variablesⓘ | 3 |
#Nonlinear Integer Variablesⓘ | 6 |
Objective Senseⓘ | min |
Objective typeⓘ | polynomial |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 12 |
#Nonlinear Nonzeros in Objectiveⓘ | 12 |
#Constraintsⓘ | 34 |
#Linear Constraintsⓘ | 22 |
#Quadratic Constraintsⓘ | 9 |
#Polynomial Constraintsⓘ | 3 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 81 |
#Nonlinear Nonzeros in Jacobianⓘ | 24 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 60 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
#Blocks in Hessian of Lagrangianⓘ | 3 |
Minimal blocksize in Hessian of Lagrangianⓘ | 7 |
Maximal blocksize in Hessian of Lagrangianⓘ | 7 |
Average blocksize in Hessian of Lagrangianⓘ | 7.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 7.8644e-08 |
Maximal coefficientⓘ | 6.3290e+03 |
Infeasibility of initial pointⓘ | 72.4 |
$offlisting * MINLP written by GAMS Convert at 04/17/01 16:40:33 * * Equation counts * Total E G L N X * 35 14 0 21 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 25 16 3 6 0 0 0 0 * FX 0 0 0 0 0 0 0 0 * * Nonzero counts * Total const NL DLL * 94 58 36 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,i16,i17,i18,i19 ,i20,i21,b22,b23,b24,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15; Binary Variables b22,b23,b24; Integer Variables i16,i17,i18,i19,i20,i21; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35; e1.. - ((6329.03 + 1800*x1)*i16*i19*b22 + (2489.31 + 1800*x2)*i17*i20*b23 + ( 3270.27 + 1800*x3)*i18*i21*b24) + objvar =E= 0; e2.. - (19.9*POWER(0.000338983050847458*x4,3) + 0.161*sqr(0.000338983050847458 *x4)*x10 - 1.90169491525424e-7*x4*sqr(x10)) + x1 =E= 0; e3.. - (1.21*POWER(0.000338983050847458*x5,3) + 0.0644*sqr( 0.000338983050847458*x5)*x11 - 1.91186440677966e-7*x5*sqr(x11)) + x2 =E= 0; e4.. - (6.52*POWER(0.000338983050847458*x6,3) + 0.102*sqr(0.000338983050847458 *x6)*x12 - 7.86440677966102e-8*x6*sqr(x12)) + x3 =E= 0; e5.. - (0.00023593220338983*x4*x10 + 629*sqr(0.000338983050847458*x4) - 0.0116 *sqr(x10)) + x7 =E= 0; e6.. - (0.001*x5*x11 + 215*sqr(0.000338983050847458*x5) - 0.115*sqr(x11)) + x8 =E= 0; e7.. - (0.000179661016949153*x6*x12 + 361*sqr(0.000338983050847458*x6) - 0.00946*sqr(x12)) + x9 =E= 0; e8.. x13 + x14 + x15 =E= 1; e9.. - 0.00285714285714286*x10*i16 + x13 =E= 0; e10.. - 0.00285714285714286*x11*i17 + x14 =E= 0; e11.. - 0.00285714285714286*x12*i18 + x15 =E= 0; e12.. - 0.0025*x7*i19 + b22 =E= 0; e13.. - 0.0025*x8*i20 + b23 =E= 0; e14.. - 0.0025*x9*i21 + b24 =E= 0; e15.. 0.000338983050847458*x4 - b22 =L= 0; e16.. 0.000338983050847458*x5 - b23 =L= 0; e17.. 0.000338983050847458*x6 - b24 =L= 0; e18.. 0.0125*x1 - b22 =L= 0; e19.. 0.04*x2 - b23 =L= 0; e20.. 0.0222222222222222*x3 - b24 =L= 0; e21.. 0.0025*x7 - b22 =L= 0; e22.. 0.0025*x8 - b23 =L= 0; e23.. 0.0025*x9 - b24 =L= 0; e24.. 0.00285714285714286*x10 - b22 =L= 0; e25.. 0.00285714285714286*x11 - b23 =L= 0; e26.. 0.00285714285714286*x12 - b24 =L= 0; e27.. x13 - b22 =L= 0; e28.. x14 - b23 =L= 0; e29.. x15 - b24 =L= 0; e30.. i16 - 3*b22 =L= 0; e31.. i17 - 3*b23 =L= 0; e32.. i18 - 3*b24 =L= 0; e33.. i19 - 3*b22 =L= 0; e34.. i20 - 3*b23 =L= 0; e35.. i21 - 3*b24 =L= 0; * set non default bounds x1.up = 80; x2.up = 25; x3.up = 45; x4.up = 2950; x5.up = 2950; x6.up = 2950; x7.up = 400; x8.up = 400; x9.up = 400; x10.up = 350; x11.up = 350; x12.up = 350; x13.up = 1; x14.up = 1; x15.up = 1; i16.up = 3; i17.up = 3; i18.up = 3; i19.up = 3; i20.up = 3; i21.up = 3; $if set nostart $goto modeldef * set non default levels x1.l = 30; x4.l = 3000; x7.l = 400; x10.l = 150; x13.l = 0.33; x14.l = 0.33; x15.l = 0.33; * set non default marginals $label modeldef Model m / all /; m.limrow=0; m.limcol=0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91