MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance quantum
Find energy eigenvalues of the anharmonic oscillator with g=1 in the Gaussian and Post-Gaussian variational methods.
Formatsⓘ | ams gms osil |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | |
Referencesⓘ | Ogura, Akihiro, Post-Gaussian variational method for quantum anharmonic oscillator, Tech. Rep. arXiv:physics/9905056v1, Laboratory of Physics, College of Science and Technology, Nihon University, 1999. |
Sourceⓘ | GAMS Model Library model quantum |
Applicationⓘ | Quantum Mechanics |
Added to libraryⓘ | 18 Aug 2014 |
Problem typeⓘ | NLP |
#Variablesⓘ | 2 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 2 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | unknown |
#Nonzeros in Objectiveⓘ | 2 |
#Nonlinear Nonzeros in Objectiveⓘ | 2 |
#Constraintsⓘ | 0 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | div gamma mul rpower sqr |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 0 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 4 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 2 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.0000e-01 |
Maximal coefficientⓘ | 2.5000e+00 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 1 1 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 3 3 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 3 1 2 0 * * Solve m using DNLP minimizing objvar; Variables objvar,x2,x3; Equations e1; e1.. -(0.5*sqr(x3)*Gamma(2 - 0.5/x3)/Gamma(0.5/x3)*x2**(1/x3) + 0.5*Gamma(1.5/ x3)/Gamma(0.5/x3)*x2**(-1/x3) + Gamma(2.5/x3)/Gamma(0.5/x3)*x2**(-2/x3)) + objvar =E= 0; * set non-default bounds x2.lo = 0.0001; x2.up = 10; x3.lo = 0.001; x3.up = 10; * set non-default levels x2.l = 1; x3.l = 1; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set DNLP $set DNLP DNLP Solve m using %DNLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91