MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance rbrock

Formats ams gms mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
0.00000000 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
-0.00000000 (ANTIGONE)
-0.00000000 (BARON)
0.00000000 (COUENNE)
0.00000000 (LINDO)
0.00000000 (SCIP)
References Rosenbrock, H H, An Automatic Method for finding the Greatest or least value of a function, The Computer Journal, 3:3, 1960, 175-184.
Source GAMS Model Library model rbrock
Application Test Problem
Added to library 31 Jul 2001
Problem type NLP
#Variables 2
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 2
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type polynomial
Objective curvature nonconcave
#Nonzeros in Objective 2
#Nonlinear Nonzeros in Objective 2
#Constraints 0
#Linear Constraints 0
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature linear
#Nonzeros in Jacobian 0
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 4
#Nonzeros in Diagonal of Hessian of Lagrangian 2
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 1.0000e+02
Infeasibility of initial point 0
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          1        1        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          3        3        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*          3        1        2        0
*
*  Solve m using NLP minimizing objvar;


Variables  objvar,x2,x3;

Equations  e1;


e1.. -(100*sqr(x3 - sqr(x2)) + sqr(1 - x2)) + objvar =E= 0;

* set non-default bounds
x2.lo = -10; x2.up = 5;
x3.lo = -10; x3.up = 10;

* set non-default levels
x2.l = -1.2;
x3.l = 1;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0