MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance sfacloc1_2_95

Probabilistic Facility Location and Assignment with Random Demand (given by 5000 scenarios), where 2 facilities can be opened anywhere in the Euclidean plane (distances are measured with the Manhattan (or L1) metric), the facilities are capacitated and each customer may be served by more than one facility.
The objective is to minimize an upper-bound on the weighted total-distance (i.e., the sum of the product of the demand of each customer times the distance to the facility serving that customer) such that this bound is satisfied with a reliability level of 0.95.
Formats ams gms mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
18.87175146 p1 ( gdx sol )
(infeas: 8e-11)
18.85008270 p2 ( gdx sol )
(infeas: 3e-14)
Other points (infeas > 1e-08)  
Dual Bounds
14.04268672 (ANTIGONE)
12.04156576 (BARON)
10.92901718 (COUENNE)
15.24662891 (LINDO)
15.49712789 (SCIP)
0.00000000 (SHOT)
References Lejeune, M A and Margot, François, Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities, Operations Research, 64:4, 2016, 939-957.
Source instance CCFACLOC/1B2C/M2_2/M2_2_1B2C_15_2_95_5000.nl from François Margot stochastic instances collection
Application Facility Location
Added to library 12 Aug 2014
Problem type MBNLP
#Variables 171
#Binary Variables 9
#Integer Variables 0
#Nonlinear Variables 68
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 15
#Nonlinear Nonzeros in Objective 0
#Constraints 208
#Linear Constraints 193
#Quadratic Constraints 7
#Polynomial Constraints 8
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 526
#Nonlinear Nonzeros in Jacobian 68
#Nonzeros in (Upper-Left) Hessian of Lagrangian 124
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 22
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 5
Average blocksize in Hessian of Lagrangian 3.090909
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 2.8000e-01
Maximal coefficient 9.9280e+01
Infeasibility of initial point 94.77
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*        209       69      123       17        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        172      163        9        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        542      474       68        0
*
*  Solve m using MINLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19
          ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36
          ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53
          ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70
          ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87
          ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103
          ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116
          ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129
          ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142
          ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
          ,x156,x157,x158,x159,x160,x161,x162,b163,b164,b165,b166,b167,b168
          ,b169,b170,b171,objvar;

Positive Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17
          ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34
          ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51
          ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68
          ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x88,x89
          ,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103,x104
          ,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116,x117
          ,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129,x130
          ,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142,x143
          ,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155,x156
          ,x157,x158,x159,x160,x161,x162;

Binary Variables  b163,b164,b165,b166,b167,b168,b169,b170,b171;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
          ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
          ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
          ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
          ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
          ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
          ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
          ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181
          ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194
          ,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207
          ,e208,e209;


e1..    x69 + x70 + x71 + x72 + x73 + x74 + x75 + x76 + x77 + x78 + x79 + x80
      + x81 + x82 + x83 - objvar =E= 0;

e2.. (-1.01*x1*x31) - 1.01*x2*x32 - 1.01*x31*x1 - 1.01*x32*x2 + x148 =E= 0;

e3.. (-2.00666666666667*x3*x33) - 2.00666666666667*x4*x34 - 2.00666666666667*
     x33*x3 - 2.00666666666667*x34*x4 + x149 =E= 0;

e4.. (-2.38*x5*x35) - 2.38*x6*x36 - 2.38*x35*x5 - 2.38*x36*x6 + x150 =E= 0;

e5.. (-x61*x38*x8) - x61*x37*x7 + x151 =E= 0;

e6.. (-x62*x40*x10) - x62*x39*x9 + x152 =E= 0;

e7.. (-x63*x42*x12) - x63*x41*x11 + x153 =E= 0;

e8.. (-3.29666666666667*x13*x43) - 3.29666666666667*x14*x44 - 3.29666666666667*
     x43*x13 - 3.29666666666667*x44*x14 + x154 =E= 0;

e9.. (-x64*x46*x16) - x64*x45*x15 + x155 =E= 0;

e10.. (-x65*x48*x18) - x65*x47*x17 + x156 =E= 0;

e11.. (-x66*x50*x20) - x66*x49*x19 + x157 =E= 0;

e12.. (-x67*x52*x22) - x67*x51*x21 + x158 =E= 0;

e13.. (-40.4533333333333*x23*x53) - 40.4533333333333*x24*x54 - 40.4533333333333
      *x53*x23 - 40.4533333333333*x54*x24 + x159 =E= 0;

e14.. (-13.0733333333333*x25*x55) - 13.0733333333333*x26*x56 - 13.0733333333333
      *x55*x25 - 13.0733333333333*x56*x26 + x160 =E= 0;

e15.. (-19*x27*x57) - 19*x28*x58 - 19*x57*x27 - 19*x58*x28 + x161 =E= 0;

e16.. (-x68*x60*x30) - x68*x59*x29 + x162 =E= 0;

e17..    x1 + x2 =E= 1;

e18..    x3 + x4 =E= 1;

e19..    x5 + x6 =E= 1;

e20..    x7 + x8 =E= 1;

e21..    x9 + x10 =E= 1;

e22..    x11 + x12 =E= 1;

e23..    x13 + x14 =E= 1;

e24..    x15 + x16 =E= 1;

e25..    x17 + x18 =E= 1;

e26..    x19 + x20 =E= 1;

e27..    x21 + x22 =E= 1;

e28..    x23 + x24 =E= 1;

e29..    x25 + x26 =E= 1;

e30..    x27 + x28 =E= 1;

e31..    x29 + x30 =E= 1;

e32..    2.02*x1 + 4.01333333333333*x3 + 4.76*x5 + 5.96*x7
       + 42.0933333333333*x9 + 99.28*x11 + 6.59333333333333*x13
       + 61.8666666666667*x15 + 56.2866666666667*x17 + 41.5*x19
       + 62.4933333333333*x21 + 80.9066666666667*x23 + 26.1466666666667*x25
       + 38*x27 + 62.24*x29 =L= 302.08;

e33..    2.02*x2 + 4.01333333333333*x4 + 4.76*x6 + 5.96*x8
       + 42.0933333333333*x10 + 99.28*x12 + 6.59333333333333*x14
       + 61.8666666666667*x16 + 56.2866666666667*x18 + 41.5*x20
       + 62.4933333333333*x22 + 80.9066666666667*x24 + 26.1466666666667*x26
       + 38*x28 + 62.24*x30 =L= 302.08;

e34..    x84 + x88 =G= 0.29424122;

e35..    x85 + x89 =G= 0.29424122;

e36..    x84 + x90 =G= 0.29760193;

e37..    x85 + x91 =G= 0.29760193;

e38..    x84 + x92 =G= 0.35149534;

e39..    x85 + x93 =G= 0.35149534;

e40..    x84 + x94 =G= 0.30458283;

e41..    x85 + x95 =G= 0.30458283;

e42..    x84 + x96 =G= 0.29951066;

e43..    x85 + x97 =G= 0.29951066;

e44..    x84 + x98 =G= 0.30694357;

e45..    x85 + x99 =G= 0.30694357;

e46..    x84 + x100 =G= 0.33520661;

e47..    x85 + x101 =G= 0.33520661;

e48..    x84 + x102 =G= 0.3400071;

e49..    x85 + x103 =G= 0.3400071;

e50..    x84 + x104 =G= 0.35227087;

e51..    x85 + x105 =G= 0.35227087;

e52..    x84 + x106 =G= 0.34225726;

e53..    x85 + x107 =G= 0.34225726;

e54..    x84 + x108 =G= 0.32776566;

e55..    x85 + x109 =G= 0.32776566;

e56..    x84 + x110 =G= 0.30438256;

e57..    x85 + x111 =G= 0.30438256;

e58..    x84 + x112 =G= 0.28538336;

e59..    x85 + x113 =G= 0.28538336;

e60..    x84 + x114 =G= 0.27950575;

e61..    x85 + x115 =G= 0.27950575;

e62..  - x84 + x88 =G= -0.29424122;

e63..  - x85 + x89 =G= -0.29424122;

e64..  - x84 + x90 =G= -0.29760193;

e65..  - x85 + x91 =G= -0.29760193;

e66..  - x84 + x92 =G= -0.35149534;

e67..  - x85 + x93 =G= -0.35149534;

e68..  - x84 + x94 =G= -0.30458283;

e69..  - x85 + x95 =G= -0.30458283;

e70..  - x84 + x96 =G= -0.29951066;

e71..  - x85 + x97 =G= -0.29951066;

e72..  - x84 + x98 =G= -0.30694357;

e73..  - x85 + x99 =G= -0.30694357;

e74..  - x84 + x100 =G= -0.33520661;

e75..  - x85 + x101 =G= -0.33520661;

e76..  - x84 + x102 =G= -0.3400071;

e77..  - x85 + x103 =G= -0.3400071;

e78..  - x84 + x106 =G= -0.34225726;

e79..  - x85 + x107 =G= -0.34225726;

e80..  - x84 + x108 =G= -0.32776566;

e81..  - x85 + x109 =G= -0.32776566;

e82..  - x84 + x110 =G= -0.30438256;

e83..  - x85 + x111 =G= -0.30438256;

e84..  - x84 + x112 =G= -0.28538336;

e85..  - x85 + x113 =G= -0.28538336;

e86..  - x84 + x114 =G= -0.27950575;

e87..  - x85 + x115 =G= -0.27950575;

e88..  - x84 + x116 =G= -0.25788969;

e89..  - x85 + x117 =G= -0.25788969;

e90..    x86 + x120 =G= -0.9536939;

e91..    x87 + x121 =G= -0.9536939;

e92..    x86 + x122 =G= -0.9004898;

e93..    x87 + x123 =G= -0.9004898;

e94..    x86 + x124 =G= -0.9114032;

e95..    x87 + x125 =G= -0.9114032;

e96..    x86 + x126 =G= -0.90071532;

e97..    x87 + x127 =G= -0.90071532;

e98..    x86 + x128 =G= -0.88043054;

e99..    x87 + x129 =G= -0.88043054;

e100..    x86 + x130 =G= -0.8680249;

e101..    x87 + x131 =G= -0.8680249;

e102..    x86 + x132 =G= -0.81034814;

e103..    x87 + x133 =G= -0.81034814;

e104..    x86 + x134 =G= -0.80843127;

e105..    x87 + x135 =G= -0.80843127;

e106..    x86 + x136 =G= -0.7794471;

e107..    x87 + x137 =G= -0.7794471;

e108..    x86 + x138 =G= -0.79930922;

e109..    x87 + x139 =G= -0.79930922;

e110..    x86 + x140 =G= -0.84280733;

e111..    x87 + x141 =G= -0.84280733;

e112..    x86 + x142 =G= -0.81379236;

e113..    x87 + x143 =G= -0.81379236;

e114..    x86 + x144 =G= -0.82457178;

e115..    x87 + x145 =G= -0.82457178;

e116..    x86 + x146 =G= -0.80226439;

e117..    x87 + x147 =G= -0.80226439;

e118..  - x86 + x118 =G= 0.98493628;

e119..  - x87 + x119 =G= 0.98493628;

e120..  - x86 + x120 =G= 0.9536939;

e121..  - x87 + x121 =G= 0.9536939;

e122..  - x86 + x122 =G= 0.9004898;

e123..  - x87 + x123 =G= 0.9004898;

e124..  - x86 + x124 =G= 0.9114032;

e125..  - x87 + x125 =G= 0.9114032;

e126..  - x86 + x126 =G= 0.90071532;

e127..  - x87 + x127 =G= 0.90071532;

e128..  - x86 + x128 =G= 0.88043054;

e129..  - x87 + x129 =G= 0.88043054;

e130..  - x86 + x130 =G= 0.8680249;

e131..  - x87 + x131 =G= 0.8680249;

e132..  - x86 + x132 =G= 0.81034814;

e133..  - x87 + x133 =G= 0.81034814;

e134..  - x86 + x134 =G= 0.80843127;

e135..  - x87 + x135 =G= 0.80843127;

e136..  - x86 + x138 =G= 0.79930922;

e137..  - x87 + x139 =G= 0.79930922;

e138..  - x86 + x140 =G= 0.84280733;

e139..  - x87 + x141 =G= 0.84280733;

e140..  - x86 + x142 =G= 0.81379236;

e141..  - x87 + x143 =G= 0.81379236;

e142..  - x86 + x144 =G= 0.82457178;

e143..  - x87 + x145 =G= 0.82457178;

e144..  - x86 + x146 =G= 0.80226439;

e145..  - x87 + x147 =G= 0.80226439;

e146..    x31 - x88 - x118 =E= 0;

e147..    x32 - x89 - x119 =E= 0;

e148..    x33 - x90 - x120 =E= 0;

e149..    x34 - x91 - x121 =E= 0;

e150..    x35 - x92 - x122 =E= 0;

e151..    x36 - x93 - x123 =E= 0;

e152..    x37 - x94 - x124 =E= 0;

e153..    x38 - x95 - x125 =E= 0;

e154..    x39 - x96 - x126 =E= 0;

e155..    x40 - x97 - x127 =E= 0;

e156..    x41 - x98 - x128 =E= 0;

e157..    x42 - x99 - x129 =E= 0;

e158..    x43 - x100 - x130 =E= 0;

e159..    x44 - x101 - x131 =E= 0;

e160..    x45 - x102 - x132 =E= 0;

e161..    x46 - x103 - x133 =E= 0;

e162..    x47 - x104 - x134 =E= 0;

e163..    x48 - x105 - x135 =E= 0;

e164..    x49 - x106 - x136 =E= 0;

e165..    x50 - x107 - x137 =E= 0;

e166..    x51 - x108 - x138 =E= 0;

e167..    x52 - x109 - x139 =E= 0;

e168..    x53 - x110 - x140 =E= 0;

e169..    x54 - x111 - x141 =E= 0;

e170..    x55 - x112 - x142 =E= 0;

e171..    x56 - x113 - x143 =E= 0;

e172..    x57 - x114 - x144 =E= 0;

e173..    x58 - x115 - x145 =E= 0;

e174..    x59 - x116 - x146 =E= 0;

e175..    x60 - x117 - x147 =E= 0;

e176..    b164 + b165 =G= 1;

e177..    b163 + b165 =G= 1;

e178..    b163 + b164 =G= 1;

e179..    b165 + b167 =G= 1;

e180..    b165 + b166 =G= 1;

e181..    b164 + b167 =G= 1;

e182..    b164 + b166 =G= 1;

e183..    b163 + b167 =G= 1;

e184..    b163 + b166 =G= 1;

e185..    b168 - b169 =G= 0;

e186..    x86 - x87 =G= 0;

e187..    x61 - 0.28*b163 =E= 5.68;

e188..    x62 - 1.91333333333333*b164 =E= 40.18;

e189..    x63 - 4.51333333333333*b165 =E= 94.7666666666667;

e190..    x64 - 2.81333333333333*b166 =E= 59.0533333333333;

e191..    x65 - 2.55333333333333*b167 =E= 53.7333333333333;

e192..    x66 - 1.88666666666667*b168 - 1.88666666666667*b169
        =E= 37.7266666666667;

e193..    x67 - 2.84666666666667*b170 =E= 59.6466666666667;

e194..    x68 - 2.96666666666667*b171 =E= 59.2733333333333;

e195..  - x69 + x148 =L= 0;

e196..  - x70 + x149 =L= 0;

e197..  - x71 + x150 =L= 0;

e198..  - x72 + x151 =L= 0;

e199..  - x73 + x152 =L= 0;

e200..  - x74 + x153 =L= 0;

e201..  - x75 + x154 =L= 0;

e202..  - x76 + x155 =L= 0;

e203..  - x77 + x156 =L= 0;

e204..  - x78 + x157 =L= 0;

e205..  - x79 + x158 =L= 0;

e206..  - x80 + x159 =L= 0;

e207..  - x81 + x160 =L= 0;

e208..  - x82 + x161 =L= 0;

e209..  - x83 + x162 =L= 0;

* set non-default bounds
x1.up = 1;
x2.up = 1;
x3.up = 1;
x4.up = 1;
x5.up = 1;
x6.up = 1;
x7.up = 1;
x8.up = 1;
x9.up = 1;
x10.up = 1;
x11.up = 1;
x12.up = 1;
x13.up = 1;
x14.up = 1;
x15.up = 1;
x16.up = 1;
x17.up = 1;
x18.up = 1;
x19.up = 1;
x20.up = 1;
x21.up = 1;
x22.up = 1;
x23.up = 1;
x24.up = 1;
x25.up = 1;
x26.up = 1;
x27.up = 1;
x28.up = 1;
x29.up = 1;
x30.up = 1;
x31.up = 0.26351883;
x32.up = 0.26351883;
x33.up = 0.22891574;
x34.up = 0.22891574;
x35.up = 0.21464835;
x36.up = 0.21464835;
x37.up = 0.17964414;
x38.up = 0.17964414;
x39.up = 0.17402843;
x40.up = 0.17402843;
x41.up = 0.15355962;
x42.up = 0.15355962;
x43.up = 0.1942283;
x44.up = 0.1942283;
x45.up = 0.25670555;
x46.up = 0.25670555;
x47.up = 0.27088619;
x48.up = 0.27088619;
x49.up = 0.28985675;
x50.up = 0.28985675;
x51.up = 0.25550303;
x52.up = 0.25550303;
x53.up = 0.19001726;
x54.up = 0.19001726;
x55.up = 0.23803143;
x56.up = 0.23803143;
x57.up = 0.23312962;
x58.up = 0.23312962;
x59.up = 0.27705307;
x60.up = 0.27705307;
x61.up = 5.96;
x62.up = 42.0933333333333;
x63.up = 99.28;
x64.up = 61.8666666666667;
x65.up = 56.2866666666667;
x66.up = 41.5;
x67.up = 62.4933333333333;
x68.up = 62.24;
x69.up = 0.5323080366;
x70.up = 0.918715169866666;
x71.up = 1.021726146;
x72.up = 1.0706790744;
x73.up = 7.32543671346667;
x74.up = 15.2453990736;
x75.up = 1.28061192466667;
x76.up = 15.8815166933333;
x77.up = 15.2472806811333;
x78.up = 12.029055125;
x79.up = 15.9672360214667;
x80.up = 15.3736631157333;
x81.up = 6.2237284564;
x82.up = 8.85892556;
x83.up = 17.2437830768;
x84.lo = 0.25788969; x84.up = 0.35227087;
x85.lo = 0.25788969; x85.up = 0.35227087;
x86.lo = -0.98493628; x86.up = -0.7794471;
x87.lo = -0.98493628; x87.up = -0.7794471;
x88.up = 0.0580296499999999;
x89.up = 0.0580296499999999;
x90.up = 0.0546689399999999;
x91.up = 0.0546689399999999;
x92.up = 0.09360565;
x93.up = 0.09360565;
x94.up = 0.0476880399999999;
x95.up = 0.0476880399999999;
x96.up = 0.05276021;
x97.up = 0.05276021;
x98.up = 0.04905388;
x99.up = 0.04905388;
x100.up = 0.07731692;
x101.up = 0.07731692;
x102.up = 0.08211741;
x103.up = 0.08211741;
x104.up = 0.09438118;
x105.up = 0.09438118;
x106.up = 0.08436757;
x107.up = 0.08436757;
x108.up = 0.06987597;
x109.up = 0.06987597;
x110.up = 0.04788831;
x111.up = 0.04788831;
x112.up = 0.0668875099999999;
x113.up = 0.0668875099999999;
x114.up = 0.07276512;
x115.up = 0.07276512;
x116.up = 0.09438118;
x117.up = 0.09438118;
x118.up = 0.20548918;
x119.up = 0.20548918;
x120.up = 0.1742468;
x121.up = 0.1742468;
x122.up = 0.1210427;
x123.up = 0.1210427;
x124.up = 0.1319561;
x125.up = 0.1319561;
x126.up = 0.12126822;
x127.up = 0.12126822;
x128.up = 0.10450574;
x129.up = 0.10450574;
x130.up = 0.11691138;
x131.up = 0.11691138;
x132.up = 0.17458814;
x133.up = 0.17458814;
x134.up = 0.17650501;
x135.up = 0.17650501;
x136.up = 0.20548918;
x137.up = 0.20548918;
x138.up = 0.18562706;
x139.up = 0.18562706;
x140.up = 0.14212895;
x141.up = 0.14212895;
x142.up = 0.17114392;
x143.up = 0.17114392;
x144.up = 0.1603645;
x145.up = 0.1603645;
x146.up = 0.18267189;
x147.up = 0.18267189;
x148.up = 0.5323080366;
x149.up = 0.918715169866666;
x150.up = 1.021726146;
x151.up = 1.0706790744;
x152.up = 7.32543671346667;
x153.up = 15.2453990736;
x154.up = 1.28061192466667;
x155.up = 15.8815166933333;
x156.up = 15.2472806811333;
x157.up = 12.029055125;
x158.up = 15.9672360214667;
x159.up = 15.3736631157333;
x160.up = 6.2237284564;
x161.up = 8.85892556;
x162.up = 17.2437830768;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0