MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sfacloc1_3_95
Probabilistic Facility Location and Assignment with Random Demand (given by 5000 scenarios), where 3 facilities can be opened anywhere in the Euclidean plane (distances are measured with the Manhattan (or L1) metric), the facilities are capacitated and each customer may be served by more than one facility. The objective is to minimize an upper-bound on the weighted total-distance (i.e., the sum of the product of the demand of each customer times the distance to the facility serving that customer) such that this bound is satisfied with a reliability level of 0.95.
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 3.37345429 (ANTIGONE) 1.93443591 (BARON) 0.54070042 (COUENNE) 3.80880534 (LINDO) 4.85058071 (SCIP) 0.00000000 (SHOT) |
Referencesⓘ | Lejeune, M A and Margot, François, Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities, Operations Research, 64:4, 2016, 939-957. |
Sourceⓘ | instance CCFACLOC/1B2C/M2_2/M2_2_1B2C_15_3_95_5000.nl from François Margot stochastic instances collection |
Applicationⓘ | Facility Location |
Added to libraryⓘ | 12 Aug 2014 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 233 |
#Binary Variablesⓘ | 9 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 98 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 15 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 281 |
#Linear Constraintsⓘ | 266 |
#Quadratic Constraintsⓘ | 7 |
#Polynomial Constraintsⓘ | 8 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 745 |
#Nonlinear Nonzeros in Jacobianⓘ | 98 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 186 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 29 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 7 |
Average blocksize in Hessian of Lagrangianⓘ | 3.37931 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.8000e-01 |
Maximal coefficientⓘ | 9.9280e+01 |
Infeasibility of initial pointⓘ | 94.77 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 282 84 180 18 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 234 225 9 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 761 663 98 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116 ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129 ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142 ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155 ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168 ,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181 ,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194 ,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,x207 ,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219,x220 ,x221,x222,x223,x224,b225,b226,b227,b228,b229,b230,b231,b232,b233 ,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68 ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85 ,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101 ,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x120 ,x121,x122,x123,x124,x125,x126,x127,x128,x129,x130,x131,x132,x133 ,x134,x135,x136,x137,x138,x139,x140,x141,x142,x143,x144,x145,x146 ,x147,x148,x149,x150,x151,x152,x153,x154,x155,x156,x157,x158,x159 ,x160,x161,x162,x163,x164,x165,x166,x167,x168,x169,x170,x171,x172 ,x173,x174,x175,x176,x177,x178,x179,x180,x181,x182,x183,x184,x185 ,x186,x187,x188,x189,x190,x191,x192,x193,x194,x195,x196,x197,x198 ,x199,x200,x201,x202,x203,x204,x205,x206,x207,x208,x209,x210,x211 ,x212,x213,x214,x215,x216,x217,x218,x219,x220,x221,x222,x223,x224; Binary Variables b225,b226,b227,b228,b229,b230,b231,b232,b233; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168 ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181 ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194 ,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207 ,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220 ,e221,e222,e223,e224,e225,e226,e227,e228,e229,e230,e231,e232,e233 ,e234,e235,e236,e237,e238,e239,e240,e241,e242,e243,e244,e245,e246 ,e247,e248,e249,e250,e251,e252,e253,e254,e255,e256,e257,e258,e259 ,e260,e261,e262,e263,e264,e265,e266,e267,e268,e269,e270,e271,e272 ,e273,e274,e275,e276,e277,e278,e279,e280,e281,e282; e1.. x99 + x100 + x101 + x102 + x103 + x104 + x105 + x106 + x107 + x108 + x109 + x110 + x111 + x112 + x113 - objvar =E= 0; e2.. (-1.01*x1*x46) - 1.01*x2*x47 - 1.01*x3*x48 - 1.01*x46*x1 - 1.01*x47*x2 - 1.01*x48*x3 + x210 =E= 0; e3.. (-2.00666666666667*x4*x49) - 2.00666666666667*x5*x50 - 2.00666666666667*x6 *x51 - 2.00666666666667*x49*x4 - 2.00666666666667*x50*x5 - 2.00666666666667*x51*x6 + x211 =E= 0; e4.. (-2.38*x7*x52) - 2.38*x8*x53 - 2.38*x9*x54 - 2.38*x52*x7 - 2.38*x53*x8 - 2.38*x54*x9 + x212 =E= 0; e5.. -(x91*x55*x10 + x91*x56*x11 + x91*x57*x12) + x213 =E= 0; e6.. -(x92*x58*x13 + x92*x59*x14 + x92*x60*x15) + x214 =E= 0; e7.. -(x93*x61*x16 + x93*x62*x17 + x93*x63*x18) + x215 =E= 0; e8.. (-3.29666666666667*x19*x64) - 3.29666666666667*x20*x65 - 3.29666666666667* x21*x66 - 3.29666666666667*x64*x19 - 3.29666666666667*x65*x20 - 3.29666666666667*x66*x21 + x216 =E= 0; e9.. -(x94*x67*x22 + x94*x68*x23 + x94*x69*x24) + x217 =E= 0; e10.. -(x95*x70*x25 + x95*x71*x26 + x95*x72*x27) + x218 =E= 0; e11.. -(x96*x73*x28 + x96*x74*x29 + x96*x75*x30) + x219 =E= 0; e12.. -(x97*x76*x31 + x97*x77*x32 + x97*x78*x33) + x220 =E= 0; e13.. (-40.4533333333333*x34*x79) - 40.4533333333333*x35*x80 - 40.4533333333333 *x36*x81 - 40.4533333333333*x79*x34 - 40.4533333333333*x80*x35 - 40.4533333333333*x81*x36 + x221 =E= 0; e14.. (-13.0733333333333*x37*x82) - 13.0733333333333*x38*x83 - 13.0733333333333 *x39*x84 - 13.0733333333333*x82*x37 - 13.0733333333333*x83*x38 - 13.0733333333333*x84*x39 + x222 =E= 0; e15.. (-19*x40*x85) - 19*x41*x86 - 19*x42*x87 - 19*x85*x40 - 19*x86*x41 - 19* x87*x42 + x223 =E= 0; e16.. -(x98*x88*x43 + x98*x89*x44 + x98*x90*x45) + x224 =E= 0; e17.. x1 + x2 + x3 =E= 1; e18.. x4 + x5 + x6 =E= 1; e19.. x7 + x8 + x9 =E= 1; e20.. x10 + x11 + x12 =E= 1; e21.. x13 + x14 + x15 =E= 1; e22.. x16 + x17 + x18 =E= 1; e23.. x19 + x20 + x21 =E= 1; e24.. x22 + x23 + x24 =E= 1; e25.. x25 + x26 + x27 =E= 1; e26.. x28 + x29 + x30 =E= 1; e27.. x31 + x32 + x33 =E= 1; e28.. x34 + x35 + x36 =E= 1; e29.. x37 + x38 + x39 =E= 1; e30.. x40 + x41 + x42 =E= 1; e31.. x43 + x44 + x45 =E= 1; e32.. 2.02*x1 + 4.01333333333333*x4 + 4.76*x7 + 5.96*x10 + 42.0933333333333*x13 + 99.28*x16 + 6.59333333333333*x19 + 61.8666666666667*x22 + 56.2866666666667*x25 + 41.5*x28 + 62.4933333333333*x31 + 80.9066666666667*x34 + 26.1466666666667*x37 + 38*x40 + 62.24*x43 =L= 213.053333333333; e33.. 2.02*x2 + 4.01333333333333*x5 + 4.76*x8 + 5.96*x11 + 42.0933333333333*x14 + 99.28*x17 + 6.59333333333333*x20 + 61.8666666666667*x23 + 56.2866666666667*x26 + 41.5*x29 + 62.4933333333333*x32 + 80.9066666666667*x35 + 26.1466666666667*x38 + 38*x41 + 62.24*x44 =L= 213.053333333333; e34.. 2.02*x3 + 4.01333333333333*x6 + 4.76*x9 + 5.96*x12 + 42.0933333333333*x15 + 99.28*x18 + 6.59333333333333*x21 + 61.8666666666667*x24 + 56.2866666666667*x27 + 41.5*x30 + 62.4933333333333*x33 + 80.9066666666667*x36 + 26.1466666666667*x39 + 38*x42 + 62.24*x45 =L= 213.053333333333; e35.. x114 + x120 =G= 0.29424122; e36.. x115 + x121 =G= 0.29424122; e37.. x116 + x122 =G= 0.29424122; e38.. x114 + x123 =G= 0.29760193; e39.. x115 + x124 =G= 0.29760193; e40.. x116 + x125 =G= 0.29760193; e41.. x114 + x126 =G= 0.35149534; e42.. x115 + x127 =G= 0.35149534; e43.. x116 + x128 =G= 0.35149534; e44.. x114 + x129 =G= 0.30458283; e45.. x115 + x130 =G= 0.30458283; e46.. x116 + x131 =G= 0.30458283; e47.. x114 + x132 =G= 0.29951066; e48.. x115 + x133 =G= 0.29951066; e49.. x116 + x134 =G= 0.29951066; e50.. x114 + x135 =G= 0.30694357; e51.. x115 + x136 =G= 0.30694357; e52.. x116 + x137 =G= 0.30694357; e53.. x114 + x138 =G= 0.33520661; e54.. x115 + x139 =G= 0.33520661; e55.. x116 + x140 =G= 0.33520661; e56.. x114 + x141 =G= 0.3400071; e57.. x115 + x142 =G= 0.3400071; e58.. x116 + x143 =G= 0.3400071; e59.. x114 + x144 =G= 0.35227087; e60.. x115 + x145 =G= 0.35227087; e61.. x116 + x146 =G= 0.35227087; e62.. x114 + x147 =G= 0.34225726; e63.. x115 + x148 =G= 0.34225726; e64.. x116 + x149 =G= 0.34225726; e65.. x114 + x150 =G= 0.32776566; e66.. x115 + x151 =G= 0.32776566; e67.. x116 + x152 =G= 0.32776566; e68.. x114 + x153 =G= 0.30438256; e69.. x115 + x154 =G= 0.30438256; e70.. x116 + x155 =G= 0.30438256; e71.. x114 + x156 =G= 0.28538336; e72.. x115 + x157 =G= 0.28538336; e73.. x116 + x158 =G= 0.28538336; e74.. x114 + x159 =G= 0.27950575; e75.. x115 + x160 =G= 0.27950575; e76.. x116 + x161 =G= 0.27950575; e77.. - x114 + x120 =G= -0.29424122; e78.. - x115 + x121 =G= -0.29424122; e79.. - x116 + x122 =G= -0.29424122; e80.. - x114 + x123 =G= -0.29760193; e81.. - x115 + x124 =G= -0.29760193; e82.. - x116 + x125 =G= -0.29760193; e83.. - x114 + x126 =G= -0.35149534; e84.. - x115 + x127 =G= -0.35149534; e85.. - x116 + x128 =G= -0.35149534; e86.. - x114 + x129 =G= -0.30458283; e87.. - x115 + x130 =G= -0.30458283; e88.. - x116 + x131 =G= -0.30458283; e89.. - x114 + x132 =G= -0.29951066; e90.. - x115 + x133 =G= -0.29951066; e91.. - x116 + x134 =G= -0.29951066; e92.. - x114 + x135 =G= -0.30694357; e93.. - x115 + x136 =G= -0.30694357; e94.. - x116 + x137 =G= -0.30694357; e95.. - x114 + x138 =G= -0.33520661; e96.. - x115 + x139 =G= -0.33520661; e97.. - x116 + x140 =G= -0.33520661; e98.. - x114 + x141 =G= -0.3400071; e99.. - x115 + x142 =G= -0.3400071; e100.. - x116 + x143 =G= -0.3400071; e101.. - x114 + x147 =G= -0.34225726; e102.. - x115 + x148 =G= -0.34225726; e103.. - x116 + x149 =G= -0.34225726; e104.. - x114 + x150 =G= -0.32776566; e105.. - x115 + x151 =G= -0.32776566; e106.. - x116 + x152 =G= -0.32776566; e107.. - x114 + x153 =G= -0.30438256; e108.. - x115 + x154 =G= -0.30438256; e109.. - x116 + x155 =G= -0.30438256; e110.. - x114 + x156 =G= -0.28538336; e111.. - x115 + x157 =G= -0.28538336; e112.. - x116 + x158 =G= -0.28538336; e113.. - x114 + x159 =G= -0.27950575; e114.. - x115 + x160 =G= -0.27950575; e115.. - x116 + x161 =G= -0.27950575; e116.. - x114 + x162 =G= -0.25788969; e117.. - x115 + x163 =G= -0.25788969; e118.. - x116 + x164 =G= -0.25788969; e119.. x117 + x168 =G= -0.9536939; e120.. x118 + x169 =G= -0.9536939; e121.. x119 + x170 =G= -0.9536939; e122.. x117 + x171 =G= -0.9004898; e123.. x118 + x172 =G= -0.9004898; e124.. x119 + x173 =G= -0.9004898; e125.. x117 + x174 =G= -0.9114032; e126.. x118 + x175 =G= -0.9114032; e127.. x119 + x176 =G= -0.9114032; e128.. x117 + x177 =G= -0.90071532; e129.. x118 + x178 =G= -0.90071532; e130.. x119 + x179 =G= -0.90071532; e131.. x117 + x180 =G= -0.88043054; e132.. x118 + x181 =G= -0.88043054; e133.. x119 + x182 =G= -0.88043054; e134.. x117 + x183 =G= -0.8680249; e135.. x118 + x184 =G= -0.8680249; e136.. x119 + x185 =G= -0.8680249; e137.. x117 + x186 =G= -0.81034814; e138.. x118 + x187 =G= -0.81034814; e139.. x119 + x188 =G= -0.81034814; e140.. x117 + x189 =G= -0.80843127; e141.. x118 + x190 =G= -0.80843127; e142.. x119 + x191 =G= -0.80843127; e143.. x117 + x192 =G= -0.7794471; e144.. x118 + x193 =G= -0.7794471; e145.. x119 + x194 =G= -0.7794471; e146.. x117 + x195 =G= -0.79930922; e147.. x118 + x196 =G= -0.79930922; e148.. x119 + x197 =G= -0.79930922; e149.. x117 + x198 =G= -0.84280733; e150.. x118 + x199 =G= -0.84280733; e151.. x119 + x200 =G= -0.84280733; e152.. x117 + x201 =G= -0.81379236; e153.. x118 + x202 =G= -0.81379236; e154.. x119 + x203 =G= -0.81379236; e155.. x117 + x204 =G= -0.82457178; e156.. x118 + x205 =G= -0.82457178; e157.. x119 + x206 =G= -0.82457178; e158.. x117 + x207 =G= -0.80226439; e159.. x118 + x208 =G= -0.80226439; e160.. x119 + x209 =G= -0.80226439; e161.. - x117 + x165 =G= 0.98493628; e162.. - x118 + x166 =G= 0.98493628; e163.. - x119 + x167 =G= 0.98493628; e164.. - x117 + x168 =G= 0.9536939; e165.. - x118 + x169 =G= 0.9536939; e166.. - x119 + x170 =G= 0.9536939; e167.. - x117 + x171 =G= 0.9004898; e168.. - x118 + x172 =G= 0.9004898; e169.. - x119 + x173 =G= 0.9004898; e170.. - x117 + x174 =G= 0.9114032; e171.. - x118 + x175 =G= 0.9114032; e172.. - x119 + x176 =G= 0.9114032; e173.. - x117 + x177 =G= 0.90071532; e174.. - x118 + x178 =G= 0.90071532; e175.. - x119 + x179 =G= 0.90071532; e176.. - x117 + x180 =G= 0.88043054; e177.. - x118 + x181 =G= 0.88043054; e178.. - x119 + x182 =G= 0.88043054; e179.. - x117 + x183 =G= 0.8680249; e180.. - x118 + x184 =G= 0.8680249; e181.. - x119 + x185 =G= 0.8680249; e182.. - x117 + x186 =G= 0.81034814; e183.. - x118 + x187 =G= 0.81034814; e184.. - x119 + x188 =G= 0.81034814; e185.. - x117 + x189 =G= 0.80843127; e186.. - x118 + x190 =G= 0.80843127; e187.. - x119 + x191 =G= 0.80843127; e188.. - x117 + x195 =G= 0.79930922; e189.. - x118 + x196 =G= 0.79930922; e190.. - x119 + x197 =G= 0.79930922; e191.. - x117 + x198 =G= 0.84280733; e192.. - x118 + x199 =G= 0.84280733; e193.. - x119 + x200 =G= 0.84280733; e194.. - x117 + x201 =G= 0.81379236; e195.. - x118 + x202 =G= 0.81379236; e196.. - x119 + x203 =G= 0.81379236; e197.. - x117 + x204 =G= 0.82457178; e198.. - x118 + x205 =G= 0.82457178; e199.. - x119 + x206 =G= 0.82457178; e200.. - x117 + x207 =G= 0.80226439; e201.. - x118 + x208 =G= 0.80226439; e202.. - x119 + x209 =G= 0.80226439; e203.. x46 - x120 - x165 =E= 0; e204.. x47 - x121 - x166 =E= 0; e205.. x48 - x122 - x167 =E= 0; e206.. x49 - x123 - x168 =E= 0; e207.. x50 - x124 - x169 =E= 0; e208.. x51 - x125 - x170 =E= 0; e209.. x52 - x126 - x171 =E= 0; e210.. x53 - x127 - x172 =E= 0; e211.. x54 - x128 - x173 =E= 0; e212.. x55 - x129 - x174 =E= 0; e213.. x56 - x130 - x175 =E= 0; e214.. x57 - x131 - x176 =E= 0; e215.. x58 - x132 - x177 =E= 0; e216.. x59 - x133 - x178 =E= 0; e217.. x60 - x134 - x179 =E= 0; e218.. x61 - x135 - x180 =E= 0; e219.. x62 - x136 - x181 =E= 0; e220.. x63 - x137 - x182 =E= 0; e221.. x64 - x138 - x183 =E= 0; e222.. x65 - x139 - x184 =E= 0; e223.. x66 - x140 - x185 =E= 0; e224.. x67 - x141 - x186 =E= 0; e225.. x68 - x142 - x187 =E= 0; e226.. x69 - x143 - x188 =E= 0; e227.. x70 - x144 - x189 =E= 0; e228.. x71 - x145 - x190 =E= 0; e229.. x72 - x146 - x191 =E= 0; e230.. x73 - x147 - x192 =E= 0; e231.. x74 - x148 - x193 =E= 0; e232.. x75 - x149 - x194 =E= 0; e233.. x76 - x150 - x195 =E= 0; e234.. x77 - x151 - x196 =E= 0; e235.. x78 - x152 - x197 =E= 0; e236.. x79 - x153 - x198 =E= 0; e237.. x80 - x154 - x199 =E= 0; e238.. x81 - x155 - x200 =E= 0; e239.. x82 - x156 - x201 =E= 0; e240.. x83 - x157 - x202 =E= 0; e241.. x84 - x158 - x203 =E= 0; e242.. x85 - x159 - x204 =E= 0; e243.. x86 - x160 - x205 =E= 0; e244.. x87 - x161 - x206 =E= 0; e245.. x88 - x162 - x207 =E= 0; e246.. x89 - x163 - x208 =E= 0; e247.. x90 - x164 - x209 =E= 0; e248.. b226 + b227 =G= 1; e249.. b225 + b227 =G= 1; e250.. b225 + b226 =G= 1; e251.. b227 + b229 =G= 1; e252.. b227 + b228 =G= 1; e253.. b226 + b229 =G= 1; e254.. b226 + b228 =G= 1; e255.. b225 + b229 =G= 1; e256.. b225 + b228 =G= 1; e257.. b230 - b231 =G= 0; e258.. x117 - x118 =G= 0; e259.. x118 - x119 =G= 0; e260.. x91 - 0.28*b225 =E= 5.68; e261.. x92 - 1.91333333333333*b226 =E= 40.18; e262.. x93 - 4.51333333333333*b227 =E= 94.7666666666667; e263.. x94 - 2.81333333333333*b228 =E= 59.0533333333333; e264.. x95 - 2.55333333333333*b229 =E= 53.7333333333333; e265.. x96 - 1.88666666666667*b230 - 1.88666666666667*b231 =E= 37.7266666666667; e266.. x97 - 2.84666666666667*b232 =E= 59.6466666666667; e267.. x98 - 2.96666666666667*b233 =E= 59.2733333333333; e268.. - x99 + x210 =L= 0; e269.. - x100 + x211 =L= 0; e270.. - x101 + x212 =L= 0; e271.. - x102 + x213 =L= 0; e272.. - x103 + x214 =L= 0; e273.. - x104 + x215 =L= 0; e274.. - x105 + x216 =L= 0; e275.. - x106 + x217 =L= 0; e276.. - x107 + x218 =L= 0; e277.. - x108 + x219 =L= 0; e278.. - x109 + x220 =L= 0; e279.. - x110 + x221 =L= 0; e280.. - x111 + x222 =L= 0; e281.. - x112 + x223 =L= 0; e282.. - x113 + x224 =L= 0; * set non-default bounds x1.up = 1; x2.up = 1; x3.up = 1; x4.up = 1; x5.up = 1; x6.up = 1; x7.up = 1; x8.up = 1; x9.up = 1; x10.up = 1; x11.up = 1; x12.up = 1; x13.up = 1; x14.up = 1; x15.up = 1; x16.up = 1; x17.up = 1; x18.up = 1; x19.up = 1; x20.up = 1; x21.up = 1; x22.up = 1; x23.up = 1; x24.up = 1; x25.up = 1; x26.up = 1; x27.up = 1; x28.up = 1; x29.up = 1; x30.up = 1; x31.up = 1; x32.up = 1; x33.up = 1; x34.up = 1; x35.up = 1; x36.up = 1; x37.up = 1; x38.up = 1; x39.up = 1; x40.up = 1; x41.up = 1; x42.up = 1; x43.up = 1; x44.up = 1; x45.up = 1; x46.up = 0.26351883; x47.up = 0.26351883; x48.up = 0.26351883; x49.up = 0.22891574; x50.up = 0.22891574; x51.up = 0.22891574; x52.up = 0.21464835; x53.up = 0.21464835; x54.up = 0.21464835; x55.up = 0.17964414; x56.up = 0.17964414; x57.up = 0.17964414; x58.up = 0.17402843; x59.up = 0.17402843; x60.up = 0.17402843; x61.up = 0.15355962; x62.up = 0.15355962; x63.up = 0.15355962; x64.up = 0.1942283; x65.up = 0.1942283; x66.up = 0.1942283; x67.up = 0.25670555; x68.up = 0.25670555; x69.up = 0.25670555; x70.up = 0.27088619; x71.up = 0.27088619; x72.up = 0.27088619; x73.up = 0.28985675; x74.up = 0.28985675; x75.up = 0.28985675; x76.up = 0.25550303; x77.up = 0.25550303; x78.up = 0.25550303; x79.up = 0.19001726; x80.up = 0.19001726; x81.up = 0.19001726; x82.up = 0.23803143; x83.up = 0.23803143; x84.up = 0.23803143; x85.up = 0.23312962; x86.up = 0.23312962; x87.up = 0.23312962; x88.up = 0.27705307; x89.up = 0.27705307; x90.up = 0.27705307; x91.up = 5.96; x92.up = 42.0933333333333; x93.up = 99.28; x94.up = 61.8666666666667; x95.up = 56.2866666666667; x96.up = 41.5; x97.up = 62.4933333333333; x98.up = 62.24; x99.up = 0.5323080366; x100.up = 0.918715169866666; x101.up = 1.021726146; x102.up = 1.0706790744; x103.up = 7.32543671346667; x104.up = 15.2453990736; x105.up = 1.28061192466667; x106.up = 15.8815166933333; x107.up = 15.2472806811333; x108.up = 12.029055125; x109.up = 15.9672360214667; x110.up = 15.3736631157333; x111.up = 6.2237284564; x112.up = 8.85892556; x113.up = 17.2437830768; x114.lo = 0.25788969; x114.up = 0.35227087; x115.lo = 0.25788969; x115.up = 0.35227087; x116.lo = 0.25788969; x116.up = 0.35227087; x117.lo = -0.98493628; x117.up = -0.7794471; x118.lo = -0.98493628; x118.up = -0.7794471; x119.lo = -0.98493628; x119.up = -0.7794471; x120.up = 0.0580296499999999; x121.up = 0.0580296499999999; x122.up = 0.0580296499999999; x123.up = 0.0546689399999999; x124.up = 0.0546689399999999; x125.up = 0.0546689399999999; x126.up = 0.09360565; x127.up = 0.09360565; x128.up = 0.09360565; x129.up = 0.0476880399999999; x130.up = 0.0476880399999999; x131.up = 0.0476880399999999; x132.up = 0.05276021; x133.up = 0.05276021; x134.up = 0.05276021; x135.up = 0.04905388; x136.up = 0.04905388; x137.up = 0.04905388; x138.up = 0.07731692; x139.up = 0.07731692; x140.up = 0.07731692; x141.up = 0.08211741; x142.up = 0.08211741; x143.up = 0.08211741; x144.up = 0.09438118; x145.up = 0.09438118; x146.up = 0.09438118; x147.up = 0.08436757; x148.up = 0.08436757; x149.up = 0.08436757; x150.up = 0.06987597; x151.up = 0.06987597; x152.up = 0.06987597; x153.up = 0.04788831; x154.up = 0.04788831; x155.up = 0.04788831; x156.up = 0.0668875099999999; x157.up = 0.0668875099999999; x158.up = 0.0668875099999999; x159.up = 0.07276512; x160.up = 0.07276512; x161.up = 0.07276512; x162.up = 0.09438118; x163.up = 0.09438118; x164.up = 0.09438118; x165.up = 0.20548918; x166.up = 0.20548918; x167.up = 0.20548918; x168.up = 0.1742468; x169.up = 0.1742468; x170.up = 0.1742468; x171.up = 0.1210427; x172.up = 0.1210427; x173.up = 0.1210427; x174.up = 0.1319561; x175.up = 0.1319561; x176.up = 0.1319561; x177.up = 0.12126822; x178.up = 0.12126822; x179.up = 0.12126822; x180.up = 0.10450574; x181.up = 0.10450574; x182.up = 0.10450574; x183.up = 0.11691138; x184.up = 0.11691138; x185.up = 0.11691138; x186.up = 0.17458814; x187.up = 0.17458814; x188.up = 0.17458814; x189.up = 0.17650501; x190.up = 0.17650501; x191.up = 0.17650501; x192.up = 0.20548918; x193.up = 0.20548918; x194.up = 0.20548918; x195.up = 0.18562706; x196.up = 0.18562706; x197.up = 0.18562706; x198.up = 0.14212895; x199.up = 0.14212895; x200.up = 0.14212895; x201.up = 0.17114392; x202.up = 0.17114392; x203.up = 0.17114392; x204.up = 0.1603645; x205.up = 0.1603645; x206.up = 0.1603645; x207.up = 0.18267189; x208.up = 0.18267189; x209.up = 0.18267189; x210.up = 0.5323080366; x211.up = 0.918715169866666; x212.up = 1.021726146; x213.up = 1.0706790744; x214.up = 7.32543671346667; x215.up = 15.2453990736; x216.up = 1.28061192466667; x217.up = 15.8815166933333; x218.up = 15.2472806811333; x219.up = 12.029055125; x220.up = 15.9672360214667; x221.up = 15.3736631157333; x222.up = 6.2237284564; x223.up = 8.85892556; x224.up = 17.2437830768; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91