MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sfacloc2_3_95
Probabilistic Facility Location and Assignment with Random Demand (given by 5000 scenarios), where 3 facilities can be opened anywhere in the Euclidean plane (distances are measured with the Manhattan (or L1) metric), the facilities are capacitated and each customer is served by a single facility. The objective is to minimize an upper-bound on the weighted total-distance (i.e., the sum of the product of the demand of each customer times the distance to the facility serving that customer) such that this bound is satisfied with a reliability level of 0.95.
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 16.15112011 (ANTIGONE) 16.15112011 (BARON) 16.15112012 (COUENNE) 16.15112012 (LINDO) 16.15112012 (SCIP) 1.34488995 (SHOT) |
Referencesⓘ | Lejeune, M A and Margot, François, Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities, Operations Research, 64:4, 2016, 939-957. |
Sourceⓘ | instance CCFACLOC/2B1C/M2_2/M2_2_1B2C_15_3_95_5000.nl from François Margot stochastic instances collection |
Applicationⓘ | Facility Location |
Added to libraryⓘ | 12 Aug 2014 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 263 |
#Binary Variablesⓘ | 54 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 98 |
#Nonlinear Binary Variablesⓘ | 45 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 15 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 342 |
#Linear Constraintsⓘ | 297 |
#Quadratic Constraintsⓘ | 21 |
#Polynomial Constraintsⓘ | 24 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 852 |
#Nonlinear Nonzeros in Jacobianⓘ | 114 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 186 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 29 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 7 |
Average blocksize in Hessian of Lagrangianⓘ | 3.37931 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 9.9280e+01 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 343 61 234 48 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 264 210 54 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 868 754 114 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70 ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87 ,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,x99,x100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116 ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129 ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142 ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155 ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168 ,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181 ,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194 ,x195,x196,x197,x198,x199,x200,x201,x202,x203,x204,x205,x206,x207 ,x208,x209,x210,x211,x212,x213,x214,x215,x216,x217,x218,x219,x220 ,x221,x222,x223,x224,x225,x226,x227,x228,x229,x230,x231,x232,x233 ,x234,x235,x236,x237,x238,x239,x240,x241,x242,x243,x244,x245,x246 ,x247,x248,x249,x250,x251,x252,x253,x254,b255,b256,b257,b258,b259 ,b260,b261,b262,b263,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x99,x100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x120,x121,x122 ,x123,x124,x125,x126,x127,x128,x129,x130,x131,x132,x133,x134,x135 ,x136,x137,x138,x139,x140,x141,x142,x143,x144,x145,x146,x147,x148 ,x149,x150,x151,x152,x153,x154,x155,x156,x157,x158,x159,x160,x161 ,x162,x163,x164,x165,x166,x167,x168,x169,x170,x171,x172,x173,x174 ,x175,x176,x177,x178,x179,x180,x181,x182,x183,x184,x185,x186,x187 ,x188,x189,x190,x191,x192,x193,x194,x195,x196,x197,x198,x199,x200 ,x201,x202,x203,x204,x205,x206,x207,x208,x209,x210,x211,x212,x213 ,x214,x215,x216,x217,x218,x219,x220,x221,x222,x223,x224,x225,x226 ,x227,x228,x229,x230,x231,x232,x233,x234,x235,x236,x237,x238,x239 ,x240,x241,x242,x243,x244,x245,x246,x247,x248,x249,x250,x251,x252 ,x253,x254; Binary Variables b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68 ,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85 ,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b255,b256,b257 ,b258,b259,b260,b261,b262,b263; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155 ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168 ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181 ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194 ,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207 ,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220 ,e221,e222,e223,e224,e225,e226,e227,e228,e229,e230,e231,e232,e233 ,e234,e235,e236,e237,e238,e239,e240,e241,e242,e243,e244,e245,e246 ,e247,e248,e249,e250,e251,e252,e253,e254,e255,e256,e257,e258,e259 ,e260,e261,e262,e263,e264,e265,e266,e267,e268,e269,e270,e271,e272 ,e273,e274,e275,e276,e277,e278,e279,e280,e281,e282,e283,e284,e285 ,e286,e287,e288,e289,e290,e291,e292,e293,e294,e295,e296,e297,e298 ,e299,e300,e301,e302,e303,e304,e305,e306,e307,e308,e309,e310,e311 ,e312,e313,e314,e315,e316,e317,e318,e319,e320,e321,e322,e323,e324 ,e325,e326,e327,e328,e329,e330,e331,e332,e333,e334,e335,e336,e337 ,e338,e339,e340,e341,e342,e343; e1.. x99 + x100 + x101 + x102 + x103 + x104 + x105 + x106 + x107 + x108 + x109 + x110 + x111 + x112 + x113 - objvar =E= 0; e2.. (-1.01*x1*b54) - 1.01*b54*x1 + x210 =G= 0; e3.. (-1.01*x2*b55) - 1.01*b55*x2 + x211 =G= 0; e4.. (-1.01*x3*b56) - 1.01*b56*x3 + x212 =G= 0; e5.. (-2.00666666666667*x4*b57) - 2.00666666666667*b57*x4 + x213 =G= 0; e6.. (-2.00666666666667*x5*b58) - 2.00666666666667*b58*x5 + x214 =G= 0; e7.. (-2.00666666666667*x6*b59) - 2.00666666666667*b59*x6 + x215 =G= 0; e8.. (-2.38*x7*b60) - 2.38*b60*x7 + x216 =G= 0; e9.. (-2.38*x8*b61) - 2.38*b61*x8 + x217 =G= 0; e10.. (-2.38*x9*b62) - 2.38*b62*x9 + x218 =G= 0; e11.. -x46*x10*b63 + x219 =G= 0; e12.. -x46*x11*b64 + x220 =G= 0; e13.. -x46*x12*b65 + x221 =G= 0; e14.. -x47*x13*b66 + x222 =G= 0; e15.. -x47*x14*b67 + x223 =G= 0; e16.. -x47*x15*b68 + x224 =G= 0; e17.. -x48*x16*b69 + x225 =G= 0; e18.. -x48*x17*b70 + x226 =G= 0; e19.. -x48*x18*b71 + x227 =G= 0; e20.. (-3.29666666666667*x19*b72) - 3.29666666666667*b72*x19 + x228 =G= 0; e21.. (-3.29666666666667*x20*b73) - 3.29666666666667*b73*x20 + x229 =G= 0; e22.. (-3.29666666666667*x21*b74) - 3.29666666666667*b74*x21 + x230 =G= 0; e23.. -x49*x22*b75 + x231 =G= 0; e24.. -x49*x23*b76 + x232 =G= 0; e25.. -x49*x24*b77 + x233 =G= 0; e26.. -x50*x25*b78 + x234 =G= 0; e27.. -x50*x26*b79 + x235 =G= 0; e28.. -x50*x27*b80 + x236 =G= 0; e29.. -x51*x28*b81 + x237 =G= 0; e30.. -x51*x29*b82 + x238 =G= 0; e31.. -x51*x30*b83 + x239 =G= 0; e32.. -x52*x31*b84 + x240 =G= 0; e33.. -x52*x32*b85 + x241 =G= 0; e34.. -x52*x33*b86 + x242 =G= 0; e35.. (-40.4533333333333*x34*b87) - 40.4533333333333*b87*x34 + x243 =G= 0; e36.. (-40.4533333333333*x35*b88) - 40.4533333333333*b88*x35 + x244 =G= 0; e37.. (-40.4533333333333*x36*b89) - 40.4533333333333*b89*x36 + x245 =G= 0; e38.. (-13.0733333333333*x37*b90) - 13.0733333333333*b90*x37 + x246 =G= 0; e39.. (-13.0733333333333*x38*b91) - 13.0733333333333*b91*x38 + x247 =G= 0; e40.. (-13.0733333333333*x39*b92) - 13.0733333333333*b92*x39 + x248 =G= 0; e41.. (-19*x40*b93) - 19*b93*x40 + x249 =G= 0; e42.. (-19*x41*b94) - 19*b94*x41 + x250 =G= 0; e43.. (-19*x42*b95) - 19*b95*x42 + x251 =G= 0; e44.. -x53*x43*b96 + x252 =G= 0; e45.. -x53*x44*b97 + x253 =G= 0; e46.. -x53*x45*b98 + x254 =G= 0; e47.. b54 + b55 + b56 =E= 1; e48.. b57 + b58 + b59 =E= 1; e49.. b60 + b61 + b62 =E= 1; e50.. b63 + b64 + b65 =E= 1; e51.. b66 + b67 + b68 =E= 1; e52.. b69 + b70 + b71 =E= 1; e53.. b72 + b73 + b74 =E= 1; e54.. b75 + b76 + b77 =E= 1; e55.. b78 + b79 + b80 =E= 1; e56.. b81 + b82 + b83 =E= 1; e57.. b84 + b85 + b86 =E= 1; e58.. b87 + b88 + b89 =E= 1; e59.. b90 + b91 + b92 =E= 1; e60.. b93 + b94 + b95 =E= 1; e61.. b96 + b97 + b98 =E= 1; e62.. 2.02*b54 + 4.01333333333333*b57 + 4.76*b60 + 5.96*b63 + 42.0933333333333*b66 + 99.28*b69 + 6.59333333333333*b72 + 61.8666666666667*b75 + 56.2866666666667*b78 + 41.5*b81 + 62.4933333333333*b84 + 80.9066666666667*b87 + 26.1466666666667*b90 + 38*b93 + 62.24*b96 =L= 213.053333333333; e63.. 2.02*b55 + 4.01333333333333*b58 + 4.76*b61 + 5.96*b64 + 42.0933333333333*b67 + 99.28*b70 + 6.59333333333333*b73 + 61.8666666666667*b76 + 56.2866666666667*b79 + 41.5*b82 + 62.4933333333333*b85 + 80.9066666666667*b88 + 26.1466666666667*b91 + 38*b94 + 62.24*b97 =L= 213.053333333333; e64.. 2.02*b56 + 4.01333333333333*b59 + 4.76*b62 + 5.96*b65 + 42.0933333333333*b68 + 99.28*b71 + 6.59333333333333*b74 + 61.8666666666667*b77 + 56.2866666666667*b80 + 41.5*b83 + 62.4933333333333*b86 + 80.9066666666667*b89 + 26.1466666666667*b92 + 38*b95 + 62.24*b98 =L= 213.053333333333; e65.. x114 + x120 =G= 0.29424122; e66.. x115 + x121 =G= 0.29424122; e67.. x116 + x122 =G= 0.29424122; e68.. x114 + x123 =G= 0.29760193; e69.. x115 + x124 =G= 0.29760193; e70.. x116 + x125 =G= 0.29760193; e71.. x114 + x126 =G= 0.35149534; e72.. x115 + x127 =G= 0.35149534; e73.. x116 + x128 =G= 0.35149534; e74.. x114 + x129 =G= 0.30458283; e75.. x115 + x130 =G= 0.30458283; e76.. x116 + x131 =G= 0.30458283; e77.. x114 + x132 =G= 0.29951066; e78.. x115 + x133 =G= 0.29951066; e79.. x116 + x134 =G= 0.29951066; e80.. x114 + x135 =G= 0.30694357; e81.. x115 + x136 =G= 0.30694357; e82.. x116 + x137 =G= 0.30694357; e83.. x114 + x138 =G= 0.33520661; e84.. x115 + x139 =G= 0.33520661; e85.. x116 + x140 =G= 0.33520661; e86.. x114 + x141 =G= 0.3400071; e87.. x115 + x142 =G= 0.3400071; e88.. x116 + x143 =G= 0.3400071; e89.. x114 + x144 =G= 0.35227087; e90.. x115 + x145 =G= 0.35227087; e91.. x116 + x146 =G= 0.35227087; e92.. x114 + x147 =G= 0.34225726; e93.. x115 + x148 =G= 0.34225726; e94.. x116 + x149 =G= 0.34225726; e95.. x114 + x150 =G= 0.32776566; e96.. x115 + x151 =G= 0.32776566; e97.. x116 + x152 =G= 0.32776566; e98.. x114 + x153 =G= 0.30438256; e99.. x115 + x154 =G= 0.30438256; e100.. x116 + x155 =G= 0.30438256; e101.. x114 + x156 =G= 0.28538336; e102.. x115 + x157 =G= 0.28538336; e103.. x116 + x158 =G= 0.28538336; e104.. x114 + x159 =G= 0.27950575; e105.. x115 + x160 =G= 0.27950575; e106.. x116 + x161 =G= 0.27950575; e107.. - x114 + x120 =G= -0.29424122; e108.. - x115 + x121 =G= -0.29424122; e109.. - x116 + x122 =G= -0.29424122; e110.. - x114 + x123 =G= -0.29760193; e111.. - x115 + x124 =G= -0.29760193; e112.. - x116 + x125 =G= -0.29760193; e113.. - x114 + x126 =G= -0.35149534; e114.. - x115 + x127 =G= -0.35149534; e115.. - x116 + x128 =G= -0.35149534; e116.. - x114 + x129 =G= -0.30458283; e117.. - x115 + x130 =G= -0.30458283; e118.. - x116 + x131 =G= -0.30458283; e119.. - x114 + x132 =G= -0.29951066; e120.. - x115 + x133 =G= -0.29951066; e121.. - x116 + x134 =G= -0.29951066; e122.. - x114 + x135 =G= -0.30694357; e123.. - x115 + x136 =G= -0.30694357; e124.. - x116 + x137 =G= -0.30694357; e125.. - x114 + x138 =G= -0.33520661; e126.. - x115 + x139 =G= -0.33520661; e127.. - x116 + x140 =G= -0.33520661; e128.. - x114 + x141 =G= -0.3400071; e129.. - x115 + x142 =G= -0.3400071; e130.. - x116 + x143 =G= -0.3400071; e131.. - x114 + x147 =G= -0.34225726; e132.. - x115 + x148 =G= -0.34225726; e133.. - x116 + x149 =G= -0.34225726; e134.. - x114 + x150 =G= -0.32776566; e135.. - x115 + x151 =G= -0.32776566; e136.. - x116 + x152 =G= -0.32776566; e137.. - x114 + x153 =G= -0.30438256; e138.. - x115 + x154 =G= -0.30438256; e139.. - x116 + x155 =G= -0.30438256; e140.. - x114 + x156 =G= -0.28538336; e141.. - x115 + x157 =G= -0.28538336; e142.. - x116 + x158 =G= -0.28538336; e143.. - x114 + x159 =G= -0.27950575; e144.. - x115 + x160 =G= -0.27950575; e145.. - x116 + x161 =G= -0.27950575; e146.. - x114 + x162 =G= -0.25788969; e147.. - x115 + x163 =G= -0.25788969; e148.. - x116 + x164 =G= -0.25788969; e149.. x117 + x168 =G= -0.9536939; e150.. x118 + x169 =G= -0.9536939; e151.. x119 + x170 =G= -0.9536939; e152.. x117 + x171 =G= -0.9004898; e153.. x118 + x172 =G= -0.9004898; e154.. x119 + x173 =G= -0.9004898; e155.. x117 + x174 =G= -0.9114032; e156.. x118 + x175 =G= -0.9114032; e157.. x119 + x176 =G= -0.9114032; e158.. x117 + x177 =G= -0.90071532; e159.. x118 + x178 =G= -0.90071532; e160.. x119 + x179 =G= -0.90071532; e161.. x117 + x180 =G= -0.88043054; e162.. x118 + x181 =G= -0.88043054; e163.. x119 + x182 =G= -0.88043054; e164.. x117 + x183 =G= -0.8680249; e165.. x118 + x184 =G= -0.8680249; e166.. x119 + x185 =G= -0.8680249; e167.. x117 + x186 =G= -0.81034814; e168.. x118 + x187 =G= -0.81034814; e169.. x119 + x188 =G= -0.81034814; e170.. x117 + x189 =G= -0.80843127; e171.. x118 + x190 =G= -0.80843127; e172.. x119 + x191 =G= -0.80843127; e173.. x117 + x192 =G= -0.7794471; e174.. x118 + x193 =G= -0.7794471; e175.. x119 + x194 =G= -0.7794471; e176.. x117 + x195 =G= -0.79930922; e177.. x118 + x196 =G= -0.79930922; e178.. x119 + x197 =G= -0.79930922; e179.. x117 + x198 =G= -0.84280733; e180.. x118 + x199 =G= -0.84280733; e181.. x119 + x200 =G= -0.84280733; e182.. x117 + x201 =G= -0.81379236; e183.. x118 + x202 =G= -0.81379236; e184.. x119 + x203 =G= -0.81379236; e185.. x117 + x204 =G= -0.82457178; e186.. x118 + x205 =G= -0.82457178; e187.. x119 + x206 =G= -0.82457178; e188.. x117 + x207 =G= -0.80226439; e189.. x118 + x208 =G= -0.80226439; e190.. x119 + x209 =G= -0.80226439; e191.. - x117 + x165 =G= 0.98493628; e192.. - x118 + x166 =G= 0.98493628; e193.. - x119 + x167 =G= 0.98493628; e194.. - x117 + x168 =G= 0.9536939; e195.. - x118 + x169 =G= 0.9536939; e196.. - x119 + x170 =G= 0.9536939; e197.. - x117 + x171 =G= 0.9004898; e198.. - x118 + x172 =G= 0.9004898; e199.. - x119 + x173 =G= 0.9004898; e200.. - x117 + x174 =G= 0.9114032; e201.. - x118 + x175 =G= 0.9114032; e202.. - x119 + x176 =G= 0.9114032; e203.. - x117 + x177 =G= 0.90071532; e204.. - x118 + x178 =G= 0.90071532; e205.. - x119 + x179 =G= 0.90071532; e206.. - x117 + x180 =G= 0.88043054; e207.. - x118 + x181 =G= 0.88043054; e208.. - x119 + x182 =G= 0.88043054; e209.. - x117 + x183 =G= 0.8680249; e210.. - x118 + x184 =G= 0.8680249; e211.. - x119 + x185 =G= 0.8680249; e212.. - x117 + x186 =G= 0.81034814; e213.. - x118 + x187 =G= 0.81034814; e214.. - x119 + x188 =G= 0.81034814; e215.. - x117 + x189 =G= 0.80843127; e216.. - x118 + x190 =G= 0.80843127; e217.. - x119 + x191 =G= 0.80843127; e218.. - x117 + x195 =G= 0.79930922; e219.. - x118 + x196 =G= 0.79930922; e220.. - x119 + x197 =G= 0.79930922; e221.. - x117 + x198 =G= 0.84280733; e222.. - x118 + x199 =G= 0.84280733; e223.. - x119 + x200 =G= 0.84280733; e224.. - x117 + x201 =G= 0.81379236; e225.. - x118 + x202 =G= 0.81379236; e226.. - x119 + x203 =G= 0.81379236; e227.. - x117 + x204 =G= 0.82457178; e228.. - x118 + x205 =G= 0.82457178; e229.. - x119 + x206 =G= 0.82457178; e230.. - x117 + x207 =G= 0.80226439; e231.. - x118 + x208 =G= 0.80226439; e232.. - x119 + x209 =G= 0.80226439; e233.. x1 - x120 - x165 =E= 0; e234.. x2 - x121 - x166 =E= 0; e235.. x3 - x122 - x167 =E= 0; e236.. x4 - x123 - x168 =E= 0; e237.. x5 - x124 - x169 =E= 0; e238.. x6 - x125 - x170 =E= 0; e239.. x7 - x126 - x171 =E= 0; e240.. x8 - x127 - x172 =E= 0; e241.. x9 - x128 - x173 =E= 0; e242.. x10 - x129 - x174 =E= 0; e243.. x11 - x130 - x175 =E= 0; e244.. x12 - x131 - x176 =E= 0; e245.. x13 - x132 - x177 =E= 0; e246.. x14 - x133 - x178 =E= 0; e247.. x15 - x134 - x179 =E= 0; e248.. x16 - x135 - x180 =E= 0; e249.. x17 - x136 - x181 =E= 0; e250.. x18 - x137 - x182 =E= 0; e251.. x19 - x138 - x183 =E= 0; e252.. x20 - x139 - x184 =E= 0; e253.. x21 - x140 - x185 =E= 0; e254.. x22 - x141 - x186 =E= 0; e255.. x23 - x142 - x187 =E= 0; e256.. x24 - x143 - x188 =E= 0; e257.. x25 - x144 - x189 =E= 0; e258.. x26 - x145 - x190 =E= 0; e259.. x27 - x146 - x191 =E= 0; e260.. x28 - x147 - x192 =E= 0; e261.. x29 - x148 - x193 =E= 0; e262.. x30 - x149 - x194 =E= 0; e263.. x31 - x150 - x195 =E= 0; e264.. x32 - x151 - x196 =E= 0; e265.. x33 - x152 - x197 =E= 0; e266.. x34 - x153 - x198 =E= 0; e267.. x35 - x154 - x199 =E= 0; e268.. x36 - x155 - x200 =E= 0; e269.. x37 - x156 - x201 =E= 0; e270.. x38 - x157 - x202 =E= 0; e271.. x39 - x158 - x203 =E= 0; e272.. x40 - x159 - x204 =E= 0; e273.. x41 - x160 - x205 =E= 0; e274.. x42 - x161 - x206 =E= 0; e275.. x43 - x162 - x207 =E= 0; e276.. x44 - x163 - x208 =E= 0; e277.. x45 - x164 - x209 =E= 0; e278.. b256 + b257 =G= 1; e279.. b255 + b257 =G= 1; e280.. b255 + b256 =G= 1; e281.. b257 + b259 =G= 1; e282.. b257 + b258 =G= 1; e283.. b256 + b259 =G= 1; e284.. b256 + b258 =G= 1; e285.. b255 + b259 =G= 1; e286.. b255 + b258 =G= 1; e287.. x46 - 5.96*b255 =G= 0; e288.. x47 - 42.0933333333333*b256 =G= 0; e289.. x48 - 99.28*b257 =G= 0; e290.. x49 - 61.8666666666667*b258 =G= 0; e291.. x50 - 56.2866666666667*b259 =G= 0; e292.. x51 - 39.6133333333333*b260 =G= 0; e293.. x51 - 41.5*b261 =G= 0; e294.. x52 - 62.4933333333333*b262 =G= 0; e295.. x53 - 62.24*b263 =G= 0; e296.. - x99 + x210 =L= 0; e297.. - x99 + x211 =L= 0; e298.. - x99 + x212 =L= 0; e299.. - x100 + x213 =L= 0; e300.. - x100 + x214 =L= 0; e301.. - x100 + x215 =L= 0; e302.. - x101 + x216 =L= 0; e303.. - x101 + x217 =L= 0; e304.. - x101 + x218 =L= 0; e305.. - x102 + x219 =L= 0; e306.. - x102 + x220 =L= 0; e307.. - x102 + x221 =L= 0; e308.. - x103 + x222 =L= 0; e309.. - x103 + x223 =L= 0; e310.. - x103 + x224 =L= 0; e311.. - x104 + x225 =L= 0; e312.. - x104 + x226 =L= 0; e313.. - x104 + x227 =L= 0; e314.. - x105 + x228 =L= 0; e315.. - x105 + x229 =L= 0; e316.. - x105 + x230 =L= 0; e317.. - x106 + x231 =L= 0; e318.. - x106 + x232 =L= 0; e319.. - x106 + x233 =L= 0; e320.. - x107 + x234 =L= 0; e321.. - x107 + x235 =L= 0; e322.. - x107 + x236 =L= 0; e323.. - x108 + x237 =L= 0; e324.. - x108 + x238 =L= 0; e325.. - x108 + x239 =L= 0; e326.. - x109 + x240 =L= 0; e327.. - x109 + x241 =L= 0; e328.. - x109 + x242 =L= 0; e329.. - x110 + x243 =L= 0; e330.. - x110 + x244 =L= 0; e331.. - x110 + x245 =L= 0; e332.. - x111 + x246 =L= 0; e333.. - x111 + x247 =L= 0; e334.. - x111 + x248 =L= 0; e335.. - x112 + x249 =L= 0; e336.. - x112 + x250 =L= 0; e337.. - x112 + x251 =L= 0; e338.. - x113 + x252 =L= 0; e339.. - x113 + x253 =L= 0; e340.. - x113 + x254 =L= 0; e341.. b260 - b261 =G= 0; e342.. x117 - x118 =G= 0; e343.. x118 - x119 =G= 0; * set non-default bounds x1.up = 0.26351883; x2.up = 0.26351883; x3.up = 0.26351883; x4.up = 0.22891574; x5.up = 0.22891574; x6.up = 0.22891574; x7.up = 0.21464835; x8.up = 0.21464835; x9.up = 0.21464835; x10.up = 0.17964414; x11.up = 0.17964414; x12.up = 0.17964414; x13.up = 0.17402843; x14.up = 0.17402843; x15.up = 0.17402843; x16.up = 0.15355962; x17.up = 0.15355962; x18.up = 0.15355962; x19.up = 0.1942283; x20.up = 0.1942283; x21.up = 0.1942283; x22.up = 0.25670555; x23.up = 0.25670555; x24.up = 0.25670555; x25.up = 0.27088619; x26.up = 0.27088619; x27.up = 0.27088619; x28.up = 0.28985675; x29.up = 0.28985675; x30.up = 0.28985675; x31.up = 0.25550303; x32.up = 0.25550303; x33.up = 0.25550303; x34.up = 0.19001726; x35.up = 0.19001726; x36.up = 0.19001726; x37.up = 0.23803143; x38.up = 0.23803143; x39.up = 0.23803143; x40.up = 0.23312962; x41.up = 0.23312962; x42.up = 0.23312962; x43.up = 0.27705307; x44.up = 0.27705307; x45.up = 0.27705307; x46.lo = 5.68; x46.up = 5.96; x47.lo = 40.18; x47.up = 42.0933333333333; x48.lo = 94.7666666666667; x48.up = 99.28; x49.lo = 59.0533333333333; x49.up = 61.8666666666667; x50.lo = 53.7333333333333; x50.up = 56.2866666666667; x51.lo = 37.7266666666667; x51.up = 41.5; x52.lo = 59.6466666666667; x52.up = 62.4933333333333; x53.lo = 59.2733333333333; x53.up = 62.24; x99.up = 0.5323080366; x100.up = 0.918715169866666; x101.up = 1.021726146; x102.up = 1.0706790744; x103.up = 7.32543671346667; x104.up = 15.2453990736; x105.up = 1.28061192466667; x106.up = 15.8815166933333; x107.up = 15.2472806811333; x108.up = 12.029055125; x109.up = 15.9672360214667; x110.up = 15.3736631157333; x111.up = 6.2237284564; x112.up = 8.85892556; x113.up = 17.2437830768; x114.lo = 0.25788969; x114.up = 0.35227087; x115.lo = 0.25788969; x115.up = 0.35227087; x116.lo = 0.25788969; x116.up = 0.35227087; x117.lo = -0.98493628; x117.up = -0.7794471; x118.lo = -0.98493628; x118.up = -0.7794471; x119.lo = -0.98493628; x119.up = -0.7794471; x120.up = 0.0580296499999999; x121.up = 0.0580296499999999; x122.up = 0.0580296499999999; x123.up = 0.0546689399999999; x124.up = 0.0546689399999999; x125.up = 0.0546689399999999; x126.up = 0.09360565; x127.up = 0.09360565; x128.up = 0.09360565; x129.up = 0.0476880399999999; x130.up = 0.0476880399999999; x131.up = 0.0476880399999999; x132.up = 0.05276021; x133.up = 0.05276021; x134.up = 0.05276021; x135.up = 0.04905388; x136.up = 0.04905388; x137.up = 0.04905388; x138.up = 0.07731692; x139.up = 0.07731692; x140.up = 0.07731692; x141.up = 0.08211741; x142.up = 0.08211741; x143.up = 0.08211741; x144.up = 0.09438118; x145.up = 0.09438118; x146.up = 0.09438118; x147.up = 0.08436757; x148.up = 0.08436757; x149.up = 0.08436757; x150.up = 0.06987597; x151.up = 0.06987597; x152.up = 0.06987597; x153.up = 0.04788831; x154.up = 0.04788831; x155.up = 0.04788831; x156.up = 0.0668875099999999; x157.up = 0.0668875099999999; x158.up = 0.0668875099999999; x159.up = 0.07276512; x160.up = 0.07276512; x161.up = 0.07276512; x162.up = 0.09438118; x163.up = 0.09438118; x164.up = 0.09438118; x165.up = 0.20548918; x166.up = 0.20548918; x167.up = 0.20548918; x168.up = 0.1742468; x169.up = 0.1742468; x170.up = 0.1742468; x171.up = 0.1210427; x172.up = 0.1210427; x173.up = 0.1210427; x174.up = 0.1319561; x175.up = 0.1319561; x176.up = 0.1319561; x177.up = 0.12126822; x178.up = 0.12126822; x179.up = 0.12126822; x180.up = 0.10450574; x181.up = 0.10450574; x182.up = 0.10450574; x183.up = 0.11691138; x184.up = 0.11691138; x185.up = 0.11691138; x186.up = 0.17458814; x187.up = 0.17458814; x188.up = 0.17458814; x189.up = 0.17650501; x190.up = 0.17650501; x191.up = 0.17650501; x192.up = 0.20548918; x193.up = 0.20548918; x194.up = 0.20548918; x195.up = 0.18562706; x196.up = 0.18562706; x197.up = 0.18562706; x198.up = 0.14212895; x199.up = 0.14212895; x200.up = 0.14212895; x201.up = 0.17114392; x202.up = 0.17114392; x203.up = 0.17114392; x204.up = 0.1603645; x205.up = 0.1603645; x206.up = 0.1603645; x207.up = 0.18267189; x208.up = 0.18267189; x209.up = 0.18267189; x210.up = 0.5323080366; x211.up = 0.5323080366; x212.up = 0.5323080366; x213.up = 0.918715169866666; x214.up = 0.918715169866666; x215.up = 0.918715169866666; x216.up = 1.021726146; x217.up = 1.021726146; x218.up = 1.021726146; x219.up = 1.0706790744; x220.up = 1.0706790744; x221.up = 1.0706790744; x222.up = 7.32543671346667; x223.up = 7.32543671346667; x224.up = 7.32543671346667; x225.up = 15.2453990736; x226.up = 15.2453990736; x227.up = 15.2453990736; x228.up = 1.28061192466667; x229.up = 1.28061192466667; x230.up = 1.28061192466667; x231.up = 15.8815166933333; x232.up = 15.8815166933333; x233.up = 15.8815166933333; x234.up = 15.2472806811333; x235.up = 15.2472806811333; x236.up = 15.2472806811333; x237.up = 12.029055125; x238.up = 12.029055125; x239.up = 12.029055125; x240.up = 15.9672360214667; x241.up = 15.9672360214667; x242.up = 15.9672360214667; x243.up = 15.3736631157333; x244.up = 15.3736631157333; x245.up = 15.3736631157333; x246.up = 6.2237284564; x247.up = 6.2237284564; x248.up = 6.2237284564; x249.up = 8.85892556; x250.up = 8.85892556; x251.up = 8.85892556; x252.up = 17.2437830768; x253.up = 17.2437830768; x254.up = 17.2437830768; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91