MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance slay08m

Determine the optimal placement of a set of units with fixed width and length such that the Euclidean distance between their center point and a predefined "safety point" is minimized.
Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
86337.02774000 p1 ( gdx sol )
(infeas: 7e-15)
84960.21242000 p2 ( gdx sol )
(infeas: 7e-15)
Other points (infeas > 1e-08)  
Dual Bounds
33497.89000000 (ALPHAECP)
84960.21117000 (ANTIGONE)
84960.21233000 (BARON)
84960.21200000 (BONMIN)
84960.21125000 (COUENNE)
84960.21242000 (CPLEX)
84960.21242000 (GUROBI)
84960.21242000 (LINDO)
84960.21242000 (SCIP)
84960.21242000 (SHOT)
References Sawaya, Nicolas W, Reformulations, relaxations and cutting planes for generalized disjunctive programming, PhD thesis, Carnegie Mellon University, 2006.
Source SLay08M.gms from CMU-IBM MINLP solver project page
Application Layout
Added to library 28 Sep 2013
Problem type MBQP
#Variables 184
#Binary Variables 112
#Integer Variables 0
#Nonlinear Variables 16
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type quadratic
Objective curvature convex
#Nonzeros in Objective 72
#Nonlinear Nonzeros in Objective 16
#Constraints 252
#Linear Constraints 252
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature linear
#Nonzeros in Jacobian 784
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 16
#Nonzeros in Diagonal of Hessian of Lagrangian 16
#Blocks in Hessian of Lagrangian 16
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 1
Average blocksize in Hessian of Lagrangian 1.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 4.0000e+02
Infeasibility of initial point 3
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*        253       29      112      112        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        185       73      112        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        857      841       16        0
*
*  Solve m using MINLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,b17,b18,b19
          ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36
          ,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53
          ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70
          ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87
          ,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103
          ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116
          ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,x129
          ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142
          ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155
          ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168
          ,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181
          ,x182,x183,x184,objvar;

Positive Variables  x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139
          ,x140,x141,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152
          ,x153,x154,x155,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165
          ,x166,x167,x168,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178
          ,x179,x180,x181,x182,x183,x184;

Binary Variables  b17,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31
          ,b32,b33,b34,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48
          ,b49,b50,b51,b52,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65
          ,b66,b67,b68,b69,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82
          ,b83,b84,b85,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99
          ,b100,b101,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112
          ,b113,b114,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125
          ,b126,b127,b128;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70
          ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87
          ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103
          ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116
          ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129
          ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142
          ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153,e154,e155
          ,e156,e157,e158,e159,e160,e161,e162,e163,e164,e165,e166,e167,e168
          ,e169,e170,e171,e172,e173,e174,e175,e176,e177,e178,e179,e180,e181
          ,e182,e183,e184,e185,e186,e187,e188,e189,e190,e191,e192,e193,e194
          ,e195,e196,e197,e198,e199,e200,e201,e202,e203,e204,e205,e206,e207
          ,e208,e209,e210,e211,e212,e213,e214,e215,e216,e217,e218,e219,e220
          ,e221,e222,e223,e224,e225,e226,e227,e228,e229,e230,e231,e232,e233
          ,e234,e235,e236,e237,e238,e239,e240,e241,e242,e243,e244,e245,e246
          ,e247,e248,e249,e250,e251,e252,e253;


e1.. -(150*(sqr((-4) + x1) + sqr((-10) + x9)) + 390*(sqr((-10) + x2) + sqr((-15
     ) + x10)) + 240*(sqr((-7) + x3) + sqr((-9) + x11)) + 70*(sqr((-3) + x4) + 
     sqr((-3) + x12)) + 165*(sqr((-20) + x5) + sqr((-17) + x13)) + 100*(sqr((-
     18) + x6) + sqr((-8) + x14)) + 200*(sqr((-30) + x7) + sqr((-20) + x15)) + 
     400*(sqr((-24) + x8) + sqr((-10) + x16))) - 300*x129 - 240*x130 - 210*x131
      - 140*x132 - 300*x133 - 250*x134 - 300*x135 - 100*x136 - 150*x137
      - 220*x138 - 200*x139 - 300*x140 - 290*x141 - 120*x142 - 300*x143
      - 150*x144 - 150*x145 - 100*x146 - 100*x147 - 120*x148 - 180*x149
      - 220*x150 - 130*x151 - 190*x152 - 110*x153 - 220*x154 - 140*x155
      - 260*x156 - 300*x157 - 240*x158 - 210*x159 - 140*x160 - 300*x161
      - 250*x162 - 300*x163 - 100*x164 - 150*x165 - 220*x166 - 200*x167
      - 300*x168 - 290*x169 - 120*x170 - 300*x171 - 150*x172 - 150*x173
      - 100*x174 - 100*x175 - 120*x176 - 180*x177 - 220*x178 - 130*x179
      - 190*x180 - 110*x181 - 220*x182 - 140*x183 - 260*x184 + objvar =E= 0;

e2..  - x1 + x2 + x129 =G= 0;

e3..  - x1 + x3 + x130 =G= 0;

e4..  - x1 + x4 + x131 =G= 0;

e5..  - x1 + x5 + x132 =G= 0;

e6..  - x1 + x6 + x133 =G= 0;

e7..  - x1 + x7 + x134 =G= 0;

e8..  - x1 + x8 + x135 =G= 0;

e9..  - x2 + x3 + x136 =G= 0;

e10..  - x2 + x4 + x137 =G= 0;

e11..  - x2 + x5 + x138 =G= 0;

e12..  - x2 + x6 + x139 =G= 0;

e13..  - x2 + x7 + x140 =G= 0;

e14..  - x2 + x8 + x141 =G= 0;

e15..  - x3 + x4 + x142 =G= 0;

e16..  - x3 + x5 + x143 =G= 0;

e17..  - x3 + x6 + x144 =G= 0;

e18..  - x3 + x7 + x145 =G= 0;

e19..  - x3 + x8 + x146 =G= 0;

e20..  - x4 + x5 + x147 =G= 0;

e21..  - x4 + x6 + x148 =G= 0;

e22..  - x4 + x7 + x149 =G= 0;

e23..  - x4 + x8 + x150 =G= 0;

e24..  - x5 + x6 + x151 =G= 0;

e25..  - x5 + x7 + x152 =G= 0;

e26..  - x5 + x8 + x153 =G= 0;

e27..  - x6 + x7 + x154 =G= 0;

e28..  - x6 + x8 + x155 =G= 0;

e29..  - x7 + x8 + x156 =G= 0;

e30..    x1 - x2 + x129 =G= 0;

e31..    x1 - x3 + x130 =G= 0;

e32..    x1 - x4 + x131 =G= 0;

e33..    x1 - x5 + x132 =G= 0;

e34..    x1 - x6 + x133 =G= 0;

e35..    x1 - x7 + x134 =G= 0;

e36..    x1 - x8 + x135 =G= 0;

e37..    x2 - x3 + x136 =G= 0;

e38..    x2 - x4 + x137 =G= 0;

e39..    x2 - x5 + x138 =G= 0;

e40..    x2 - x6 + x139 =G= 0;

e41..    x2 - x7 + x140 =G= 0;

e42..    x2 - x8 + x141 =G= 0;

e43..    x3 - x4 + x142 =G= 0;

e44..    x3 - x5 + x143 =G= 0;

e45..    x3 - x6 + x144 =G= 0;

e46..    x3 - x7 + x145 =G= 0;

e47..    x3 - x8 + x146 =G= 0;

e48..    x4 - x5 + x147 =G= 0;

e49..    x4 - x6 + x148 =G= 0;

e50..    x4 - x7 + x149 =G= 0;

e51..    x4 - x8 + x150 =G= 0;

e52..    x5 - x6 + x151 =G= 0;

e53..    x5 - x7 + x152 =G= 0;

e54..    x5 - x8 + x153 =G= 0;

e55..    x6 - x7 + x154 =G= 0;

e56..    x6 - x8 + x155 =G= 0;

e57..    x7 - x8 + x156 =G= 0;

e58..  - x9 + x10 + x157 =G= 0;

e59..  - x9 + x11 + x158 =G= 0;

e60..  - x9 + x12 + x159 =G= 0;

e61..  - x9 + x13 + x160 =G= 0;

e62..  - x9 + x14 + x161 =G= 0;

e63..  - x9 + x15 + x162 =G= 0;

e64..  - x9 + x16 + x163 =G= 0;

e65..  - x10 + x11 + x164 =G= 0;

e66..  - x10 + x12 + x165 =G= 0;

e67..  - x10 + x13 + x166 =G= 0;

e68..  - x10 + x14 + x167 =G= 0;

e69..  - x10 + x15 + x168 =G= 0;

e70..  - x10 + x16 + x169 =G= 0;

e71..  - x11 + x12 + x170 =G= 0;

e72..  - x11 + x13 + x171 =G= 0;

e73..  - x11 + x14 + x172 =G= 0;

e74..  - x11 + x15 + x173 =G= 0;

e75..  - x11 + x16 + x174 =G= 0;

e76..  - x12 + x13 + x175 =G= 0;

e77..  - x12 + x14 + x176 =G= 0;

e78..  - x12 + x15 + x177 =G= 0;

e79..  - x12 + x16 + x178 =G= 0;

e80..  - x13 + x14 + x179 =G= 0;

e81..  - x13 + x15 + x180 =G= 0;

e82..  - x13 + x16 + x181 =G= 0;

e83..  - x14 + x15 + x182 =G= 0;

e84..  - x14 + x16 + x183 =G= 0;

e85..  - x15 + x16 + x184 =G= 0;

e86..    x9 - x10 + x157 =G= 0;

e87..    x9 - x11 + x158 =G= 0;

e88..    x9 - x12 + x159 =G= 0;

e89..    x9 - x13 + x160 =G= 0;

e90..    x9 - x14 + x161 =G= 0;

e91..    x9 - x15 + x162 =G= 0;

e92..    x9 - x16 + x163 =G= 0;

e93..    x10 - x11 + x164 =G= 0;

e94..    x10 - x12 + x165 =G= 0;

e95..    x10 - x13 + x166 =G= 0;

e96..    x10 - x14 + x167 =G= 0;

e97..    x10 - x15 + x168 =G= 0;

e98..    x10 - x16 + x169 =G= 0;

e99..    x11 - x12 + x170 =G= 0;

e100..    x11 - x13 + x171 =G= 0;

e101..    x11 - x14 + x172 =G= 0;

e102..    x11 - x15 + x173 =G= 0;

e103..    x11 - x16 + x174 =G= 0;

e104..    x12 - x13 + x175 =G= 0;

e105..    x12 - x14 + x176 =G= 0;

e106..    x12 - x15 + x177 =G= 0;

e107..    x12 - x16 + x178 =G= 0;

e108..    x13 - x14 + x179 =G= 0;

e109..    x13 - x15 + x180 =G= 0;

e110..    x13 - x16 + x181 =G= 0;

e111..    x14 - x15 + x182 =G= 0;

e112..    x14 - x16 + x183 =G= 0;

e113..    x15 - x16 + x184 =G= 0;

e114..    x1 - x2 + 40*b17 =L= 34;

e115..    x1 - x3 + 40*b18 =L= 36;

e116..    x1 - x4 + 40*b19 =L= 36.5;

e117..    x1 - x5 + 40*b20 =L= 35.5;

e118..    x1 - x6 + 40*b21 =L= 35;

e119..    x1 - x7 + 40*b22 =L= 33.5;

e120..    x1 - x8 + 40*b23 =L= 35.5;

e121..    x2 - x3 + 40*b24 =L= 35;

e122..    x2 - x4 + 40*b25 =L= 35.5;

e123..    x2 - x5 + 40*b26 =L= 34.5;

e124..    x2 - x6 + 40*b27 =L= 34;

e125..    x2 - x7 + 40*b28 =L= 32.5;

e126..    x2 - x8 + 40*b29 =L= 34.5;

e127..    x3 - x4 + 40*b30 =L= 37.5;

e128..    x3 - x5 + 40*b31 =L= 36.5;

e129..    x3 - x6 + 40*b32 =L= 36;

e130..    x3 - x7 + 40*b33 =L= 34.5;

e131..    x3 - x8 + 40*b34 =L= 36.5;

e132..    x4 - x5 + 40*b35 =L= 37;

e133..    x4 - x6 + 40*b36 =L= 36.5;

e134..    x4 - x7 + 40*b37 =L= 35;

e135..    x4 - x8 + 40*b38 =L= 37;

e136..    x5 - x6 + 40*b39 =L= 35.5;

e137..    x5 - x7 + 40*b40 =L= 34;

e138..    x5 - x8 + 40*b41 =L= 36;

e139..    x6 - x7 + 40*b42 =L= 33.5;

e140..    x6 - x8 + 40*b43 =L= 35.5;

e141..    x7 - x8 + 40*b44 =L= 34;

e142..  - x1 + x2 + 40*b45 =L= 34;

e143..  - x1 + x3 + 40*b46 =L= 36;

e144..  - x1 + x4 + 40*b47 =L= 36.5;

e145..  - x1 + x5 + 40*b48 =L= 35.5;

e146..  - x1 + x6 + 40*b49 =L= 35;

e147..  - x1 + x7 + 40*b50 =L= 33.5;

e148..  - x1 + x8 + 40*b51 =L= 35.5;

e149..  - x2 + x3 + 40*b52 =L= 35;

e150..  - x2 + x4 + 40*b53 =L= 35.5;

e151..  - x2 + x5 + 40*b54 =L= 34.5;

e152..  - x2 + x6 + 40*b55 =L= 34;

e153..  - x2 + x7 + 40*b56 =L= 32.5;

e154..  - x2 + x8 + 40*b57 =L= 34.5;

e155..  - x3 + x4 + 40*b58 =L= 37.5;

e156..  - x3 + x5 + 40*b59 =L= 36.5;

e157..  - x3 + x6 + 40*b60 =L= 36;

e158..  - x3 + x7 + 40*b61 =L= 34.5;

e159..  - x3 + x8 + 40*b62 =L= 36.5;

e160..  - x4 + x5 + 40*b63 =L= 37;

e161..  - x4 + x6 + 40*b64 =L= 36.5;

e162..  - x4 + x7 + 40*b65 =L= 35;

e163..  - x4 + x8 + 40*b66 =L= 37;

e164..  - x5 + x6 + 40*b67 =L= 35.5;

e165..  - x5 + x7 + 40*b68 =L= 34;

e166..  - x5 + x8 + 40*b69 =L= 36;

e167..  - x6 + x7 + 40*b70 =L= 33.5;

e168..  - x6 + x8 + 40*b71 =L= 35.5;

e169..  - x7 + x8 + 40*b72 =L= 34;

e170..    x9 - x10 + 40*b73 =L= 34.5;

e171..    x9 - x11 + 40*b74 =L= 35.5;

e172..    x9 - x12 + 40*b75 =L= 35.5;

e173..    x9 - x13 + 40*b76 =L= 35;

e174..    x9 - x14 + 40*b77 =L= 36;

e175..    x9 - x15 + 40*b78 =L= 34;

e176..    x9 - x16 + 40*b79 =L= 34;

e177..    x10 - x11 + 40*b80 =L= 36;

e178..    x10 - x12 + 40*b81 =L= 36;

e179..    x10 - x13 + 40*b82 =L= 35.5;

e180..    x10 - x14 + 40*b83 =L= 36.5;

e181..    x10 - x15 + 40*b84 =L= 34.5;

e182..    x10 - x16 + 40*b85 =L= 34.5;

e183..    x11 - x12 + 40*b86 =L= 37;

e184..    x11 - x13 + 40*b87 =L= 36.5;

e185..    x11 - x14 + 40*b88 =L= 37.5;

e186..    x11 - x15 + 40*b89 =L= 35.5;

e187..    x11 - x16 + 40*b90 =L= 35.5;

e188..    x12 - x13 + 40*b91 =L= 36.5;

e189..    x12 - x14 + 40*b92 =L= 37.5;

e190..    x12 - x15 + 40*b93 =L= 35.5;

e191..    x12 - x16 + 40*b94 =L= 35.5;

e192..    x13 - x14 + 40*b95 =L= 37;

e193..    x13 - x15 + 40*b96 =L= 35;

e194..    x13 - x16 + 40*b97 =L= 35;

e195..    x14 - x15 + 40*b98 =L= 36;

e196..    x14 - x16 + 40*b99 =L= 36;

e197..    x15 - x16 + 40*b100 =L= 34;

e198..  - x9 + x10 + 40*b101 =L= 34.5;

e199..  - x9 + x11 + 40*b102 =L= 35.5;

e200..  - x9 + x12 + 40*b103 =L= 35.5;

e201..  - x9 + x13 + 40*b104 =L= 35;

e202..  - x9 + x14 + 40*b105 =L= 36;

e203..  - x9 + x15 + 40*b106 =L= 34;

e204..  - x9 + x16 + 40*b107 =L= 34;

e205..  - x10 + x11 + 40*b108 =L= 36;

e206..  - x10 + x12 + 40*b109 =L= 36;

e207..  - x10 + x13 + 40*b110 =L= 35.5;

e208..  - x10 + x14 + 40*b111 =L= 36.5;

e209..  - x10 + x15 + 40*b112 =L= 34.5;

e210..  - x10 + x16 + 40*b113 =L= 34.5;

e211..  - x11 + x12 + 40*b114 =L= 37;

e212..  - x11 + x13 + 40*b115 =L= 36.5;

e213..  - x11 + x14 + 40*b116 =L= 37.5;

e214..  - x11 + x15 + 40*b117 =L= 35.5;

e215..  - x11 + x16 + 40*b118 =L= 35.5;

e216..  - x12 + x13 + 40*b119 =L= 36.5;

e217..  - x12 + x14 + 40*b120 =L= 37.5;

e218..  - x12 + x15 + 40*b121 =L= 35.5;

e219..  - x12 + x16 + 40*b122 =L= 35.5;

e220..  - x13 + x14 + 40*b123 =L= 37;

e221..  - x13 + x15 + 40*b124 =L= 35;

e222..  - x13 + x16 + 40*b125 =L= 35;

e223..  - x14 + x15 + 40*b126 =L= 36;

e224..  - x14 + x16 + 40*b127 =L= 36;

e225..  - x15 + x16 + 40*b128 =L= 34;

e226..    b17 + b45 + b73 + b101 =E= 1;

e227..    b18 + b46 + b74 + b102 =E= 1;

e228..    b19 + b47 + b75 + b103 =E= 1;

e229..    b20 + b48 + b76 + b104 =E= 1;

e230..    b21 + b49 + b77 + b105 =E= 1;

e231..    b22 + b50 + b78 + b106 =E= 1;

e232..    b23 + b51 + b79 + b107 =E= 1;

e233..    b24 + b52 + b80 + b108 =E= 1;

e234..    b25 + b53 + b81 + b109 =E= 1;

e235..    b26 + b54 + b82 + b110 =E= 1;

e236..    b27 + b55 + b83 + b111 =E= 1;

e237..    b28 + b56 + b84 + b112 =E= 1;

e238..    b29 + b57 + b85 + b113 =E= 1;

e239..    b30 + b58 + b86 + b114 =E= 1;

e240..    b31 + b59 + b87 + b115 =E= 1;

e241..    b32 + b60 + b88 + b116 =E= 1;

e242..    b33 + b61 + b89 + b117 =E= 1;

e243..    b34 + b62 + b90 + b118 =E= 1;

e244..    b35 + b63 + b91 + b119 =E= 1;

e245..    b36 + b64 + b92 + b120 =E= 1;

e246..    b37 + b65 + b93 + b121 =E= 1;

e247..    b38 + b66 + b94 + b122 =E= 1;

e248..    b39 + b67 + b95 + b123 =E= 1;

e249..    b40 + b68 + b96 + b124 =E= 1;

e250..    b41 + b69 + b97 + b125 =E= 1;

e251..    b42 + b70 + b98 + b126 =E= 1;

e252..    b43 + b71 + b99 + b127 =E= 1;

e253..    b44 + b72 + b100 + b128 =E= 1;

* set non-default bounds
x1.lo = 2.5; x1.up = 37.5;
x2.lo = 3.5; x2.up = 36.5;
x3.lo = 1.5; x3.up = 38.5;
x4.lo = 1; x4.up = 39;
x5.lo = 2; x5.up = 38;
x6.lo = 2.5; x6.up = 37.5;
x7.lo = 4; x7.up = 36;
x8.lo = 2; x8.up = 38;
x9.lo = 3; x9.up = 37;
x10.lo = 2.5; x10.up = 37.5;
x11.lo = 1.5; x11.up = 38.5;
x12.lo = 1.5; x12.up = 38.5;
x13.lo = 2; x13.up = 38;
x14.lo = 1; x14.up = 39;
x15.lo = 3; x15.up = 37;
x16.lo = 3; x16.up = 37;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0