MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sonetgr17
A variant of the graph partitioning problem where the weight of a cluster in the partition depends on the edges incident to its nodes. This instance has its origin in SONET/SDH optical networks.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -9594.00001000 (ANTIGONE) -9594.00000000 (BARON) -42381.00000000 (COUENNE) -26666.38511000 (CPLEX) -9594.00000000 (GUROBI) -9594.00000000 (LINDO) -9594.00000000 (SCIP) -9594.00000000 (SHOT) |
Referencesⓘ | Bonami, Pierre, Nguyen, Viet Hung, Klein, Michel, and Minoux, Michel, On the Solution of a Graph Partitioning Problem under Capacity Constraints. In Mahjoub, A. Ridha, Markakis, Vangelis, Milis, Ioannis, and Paschos, Vangelis Th., Eds, Combinatorial Optimization, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, 285-296. |
Sourceⓘ | QPLIB instance 1976, contributed by Pierre Bonami |
Applicationⓘ | Graph Partitioning |
Added to libraryⓘ | 18 Aug 2018 |
Problem typeⓘ | BQCQP |
#Variablesⓘ | 152 |
#Binary Variablesⓘ | 152 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 151 |
#Nonlinear Binary Variablesⓘ | 151 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 151 |
#Nonlinear Nonzeros in Objectiveⓘ | 151 |
#Constraintsⓘ | 152 |
#Linear Constraintsⓘ | 136 |
#Quadratic Constraintsⓘ | 16 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 543 |
#Nonlinear Nonzeros in Jacobianⓘ | 151 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 1600 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 16 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 16 |
Average blocksize in Hessian of Lagrangianⓘ | 9.4375 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 1.3837e+04 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 153 17 0 136 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 153 1 152 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 695 393 302 0 * * Solve m using MIQCP minimizing objvar; Variables objvar,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18 ,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35 ,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52 ,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69 ,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86 ,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102 ,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115 ,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128 ,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141 ,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153; Binary Variables b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18 ,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35 ,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52 ,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69 ,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86 ,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102 ,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115 ,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128 ,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141 ,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152,e153; e1.. (-540*b2*b3) - 383*b2 - 886*b3 - 426*b2*b4 - 777*b4 - 172*b2*b5 - 915*b5 - 736*b2*b6 - 793*b6 - 211*b2*b7 - 335*b7 - 368*b2*b8 - 386*b8 - 567*b2* b9 - 492*b9 - 429*b2*b10 - 649*b10 - 782*b2*b11 - 421*b11 - 530*b2*b12 - 362*b12 - 862*b2*b13 - 27*b13 - 123*b2*b14 - 690*b14 - 67*b2*b15 - 59*b15 - 135*b2*b16 - 763*b16 - 929*b2*b17 - 926*b17 - 802*b3*b4 - 22*b3*b5 - 58 *b3*b6 - 69*b3*b7 - 167*b3*b8 - 393*b3*b9 - 456*b3*b10 - 11*b3*b11 - 42*b3 *b12 - 229*b3*b13 - 373*b3*b14 - 421*b3*b15 - 919*b3*b16 - 784*b3*b17 - 537*b4*b5 - 198*b4*b6 - 324*b4*b7 - 315*b4*b8 - 370*b4*b9 - 413*b4*b10 - 526*b4*b11 - 91*b4*b12 - 980*b4*b13 - 956*b4*b14 - 873*b4*b15 - 862*b4*b16 - 170*b4*b17 - 996*b5*b6 - 281*b5*b7 - 305*b5*b8 - 925*b5*b9 - 84*b5*b10 - 327*b5*b11 - 336*b5*b12 - 505*b5*b13 - 846*b5*b14 - 729*b5*b15 - 313*b5 *b16 - 857*b5*b17 - 124*b6*b7 - 895*b6*b8 - 582*b6*b9 - 545*b6*b10 - 814* b6*b11 - 367*b6*b12 - 434*b6*b13 - 364*b6*b14 - 43*b6*b15 - 750*b6*b16 - 87*b6*b17 - 808*b7*b8 - 276*b7*b9 - 178*b7*b10 - 788*b7*b11 - 584*b7*b12 - 403*b7*b13 - 651*b7*b14 - 754*b7*b15 - 399*b7*b16 - 932*b7*b17 - 60*b8* b9 - 676*b8*b10 - 368*b8*b11 - 739*b8*b12 - 12*b8*b13 - 226*b8*b14 - 586* b8*b15 - 94*b8*b16 - 539*b8*b17 - 795*b9*b10 - 570*b9*b11 - 434*b9*b12 - 378*b9*b13 - 467*b9*b14 - 601*b9*b15 - 97*b9*b16 - 902*b9*b17 - 317*b10* b11 - 492*b10*b12 - 652*b10*b13 - 756*b10*b14 - 301*b10*b15 - 280*b10*b16 - 286*b10*b17 - 441*b11*b12 - 865*b11*b13 - 689*b11*b14 - 444*b11*b15 - 619*b11*b16 - 440*b11*b17 - 729*b12*b13 - 31*b12*b14 - 117*b12*b15 - 97* b12*b16 - 771*b12*b17 - 481*b13*b14 - 675*b13*b15 - 709*b13*b16 - 927*b13* b17 - 567*b14*b15 - 856*b14*b16 - 497*b14*b17 - 353*b15*b16 - 586*b15*b17 - 965*b16*b17 - 540*b18*b19 - 426*b18*b20 - 172*b18*b21 - 736*b18*b22 - 211*b18*b23 - 368*b18*b24 - 567*b18*b25 - 429*b18*b26 - 782*b18*b27 - 530* b18*b28 - 862*b18*b29 - 123*b18*b30 - 67*b18*b31 - 135*b18*b32 - 929*b18* b33 - 802*b19*b20 - 22*b19*b21 - 58*b19*b22 - 69*b19*b23 - 167*b19*b24 - 393*b19*b25 - 456*b19*b26 - 11*b19*b27 - 42*b19*b28 - 229*b19*b29 - 373* b19*b30 - 421*b19*b31 - 919*b19*b32 - 784*b19*b33 - 537*b20*b21 - 198*b20* b22 - 324*b20*b23 - 315*b20*b24 - 370*b20*b25 - 413*b20*b26 - 526*b20*b27 - 91*b20*b28 - 980*b20*b29 - 956*b20*b30 - 873*b20*b31 - 862*b20*b32 - 170*b20*b33 - 996*b21*b22 - 281*b21*b23 - 305*b21*b24 - 925*b21*b25 - 84* b21*b26 - 327*b21*b27 - 336*b21*b28 - 505*b21*b29 - 846*b21*b30 - 729*b21* b31 - 313*b21*b32 - 857*b21*b33 - 124*b22*b23 - 895*b22*b24 - 582*b22*b25 - 545*b22*b26 - 814*b22*b27 - 367*b22*b28 - 434*b22*b29 - 364*b22*b30 - 43*b22*b31 - 750*b22*b32 - 87*b22*b33 - 808*b23*b24 - 276*b23*b25 - 178* b23*b26 - 788*b23*b27 - 584*b23*b28 - 403*b23*b29 - 651*b23*b30 - 754*b23* b31 - 399*b23*b32 - 932*b23*b33 - 60*b24*b25 - 676*b24*b26 - 368*b24*b27 - 739*b24*b28 - 12*b24*b29 - 226*b24*b30 - 586*b24*b31 - 94*b24*b32 - 539 *b24*b33 - 795*b25*b26 - 570*b25*b27 - 434*b25*b28 - 378*b25*b29 - 467*b25 *b30 - 601*b25*b31 - 97*b25*b32 - 902*b25*b33 - 317*b26*b27 - 492*b26*b28 - 652*b26*b29 - 756*b26*b30 - 301*b26*b31 - 280*b26*b32 - 286*b26*b33 - 441*b27*b28 - 865*b27*b29 - 689*b27*b30 - 444*b27*b31 - 619*b27*b32 - 440* b27*b33 - 729*b28*b29 - 31*b28*b30 - 117*b28*b31 - 97*b28*b32 - 771*b28* b33 - 481*b29*b30 - 675*b29*b31 - 709*b29*b32 - 927*b29*b33 - 567*b30*b31 - 856*b30*b32 - 497*b30*b33 - 353*b31*b32 - 586*b31*b33 - 965*b32*b33 - 802*b34*b35 - 22*b34*b36 - 58*b34*b37 - 69*b34*b38 - 167*b34*b39 - 393*b34 *b40 - 456*b34*b41 - 11*b34*b42 - 42*b34*b43 - 229*b34*b44 - 373*b34*b45 - 421*b34*b46 - 919*b34*b47 - 784*b34*b48 - 537*b35*b36 - 198*b35*b37 - 324*b35*b38 - 315*b35*b39 - 370*b35*b40 - 413*b35*b41 - 526*b35*b42 - 91* b35*b43 - 980*b35*b44 - 956*b35*b45 - 873*b35*b46 - 862*b35*b47 - 170*b35* b48 - 996*b36*b37 - 281*b36*b38 - 305*b36*b39 - 925*b36*b40 - 84*b36*b41 - 327*b36*b42 - 336*b36*b43 - 505*b36*b44 - 846*b36*b45 - 729*b36*b46 - 313*b36*b47 - 857*b36*b48 - 124*b37*b38 - 895*b37*b39 - 582*b37*b40 - 545* b37*b41 - 814*b37*b42 - 367*b37*b43 - 434*b37*b44 - 364*b37*b45 - 43*b37* b46 - 750*b37*b47 - 87*b37*b48 - 808*b38*b39 - 276*b38*b40 - 178*b38*b41 - 788*b38*b42 - 584*b38*b43 - 403*b38*b44 - 651*b38*b45 - 754*b38*b46 - 399*b38*b47 - 932*b38*b48 - 60*b39*b40 - 676*b39*b41 - 368*b39*b42 - 739* b39*b43 - 12*b39*b44 - 226*b39*b45 - 586*b39*b46 - 94*b39*b47 - 539*b39* b48 - 795*b40*b41 - 570*b40*b42 - 434*b40*b43 - 378*b40*b44 - 467*b40*b45 - 601*b40*b46 - 97*b40*b47 - 902*b40*b48 - 317*b41*b42 - 492*b41*b43 - 652*b41*b44 - 756*b41*b45 - 301*b41*b46 - 280*b41*b47 - 286*b41*b48 - 441* b42*b43 - 865*b42*b44 - 689*b42*b45 - 444*b42*b46 - 619*b42*b47 - 440*b42* b48 - 729*b43*b44 - 31*b43*b45 - 117*b43*b46 - 97*b43*b47 - 771*b43*b48 - 481*b44*b45 - 675*b44*b46 - 709*b44*b47 - 927*b44*b48 - 567*b45*b46 - 856* b45*b47 - 497*b45*b48 - 353*b46*b47 - 586*b46*b48 - 965*b47*b48 - 537*b49* b50 - 198*b49*b51 - 324*b49*b52 - 315*b49*b53 - 370*b49*b54 - 413*b49*b55 - 526*b49*b56 - 91*b49*b57 - 980*b49*b58 - 956*b49*b59 - 873*b49*b60 - 862*b49*b61 - 170*b49*b62 - 996*b50*b51 - 281*b50*b52 - 305*b50*b53 - 925* b50*b54 - 84*b50*b55 - 327*b50*b56 - 336*b50*b57 - 505*b50*b58 - 846*b50* b59 - 729*b50*b60 - 313*b50*b61 - 857*b50*b62 - 124*b51*b52 - 895*b51*b53 - 582*b51*b54 - 545*b51*b55 - 814*b51*b56 - 367*b51*b57 - 434*b51*b58 - 364*b51*b59 - 43*b51*b60 - 750*b51*b61 - 87*b51*b62 - 808*b52*b53 - 276* b52*b54 - 178*b52*b55 - 788*b52*b56 - 584*b52*b57 - 403*b52*b58 - 651*b52* b59 - 754*b52*b60 - 399*b52*b61 - 932*b52*b62 - 60*b53*b54 - 676*b53*b55 - 368*b53*b56 - 739*b53*b57 - 12*b53*b58 - 226*b53*b59 - 586*b53*b60 - 94 *b53*b61 - 539*b53*b62 - 795*b54*b55 - 570*b54*b56 - 434*b54*b57 - 378*b54 *b58 - 467*b54*b59 - 601*b54*b60 - 97*b54*b61 - 902*b54*b62 - 317*b55*b56 - 492*b55*b57 - 652*b55*b58 - 756*b55*b59 - 301*b55*b60 - 280*b55*b61 - 286*b55*b62 - 441*b56*b57 - 865*b56*b58 - 689*b56*b59 - 444*b56*b60 - 619* b56*b61 - 440*b56*b62 - 729*b57*b58 - 31*b57*b59 - 117*b57*b60 - 97*b57* b61 - 771*b57*b62 - 481*b58*b59 - 675*b58*b60 - 709*b58*b61 - 927*b58*b62 - 567*b59*b60 - 856*b59*b61 - 497*b59*b62 - 353*b60*b61 - 586*b60*b62 - 965*b61*b62 - 996*b63*b64 - 281*b63*b65 - 305*b63*b66 - 925*b63*b67 - 84* b63*b68 - 327*b63*b69 - 336*b63*b70 - 505*b63*b71 - 846*b63*b72 - 729*b63* b73 - 313*b63*b74 - 857*b63*b75 - 124*b64*b65 - 895*b64*b66 - 582*b64*b67 - 545*b64*b68 - 814*b64*b69 - 367*b64*b70 - 434*b64*b71 - 364*b64*b72 - 43*b64*b73 - 750*b64*b74 - 87*b64*b75 - 808*b65*b66 - 276*b65*b67 - 178* b65*b68 - 788*b65*b69 - 584*b65*b70 - 403*b65*b71 - 651*b65*b72 - 754*b65* b73 - 399*b65*b74 - 932*b65*b75 - 60*b66*b67 - 676*b66*b68 - 368*b66*b69 - 739*b66*b70 - 12*b66*b71 - 226*b66*b72 - 586*b66*b73 - 94*b66*b74 - 539 *b66*b75 - 795*b67*b68 - 570*b67*b69 - 434*b67*b70 - 378*b67*b71 - 467*b67 *b72 - 601*b67*b73 - 97*b67*b74 - 902*b67*b75 - 317*b68*b69 - 492*b68*b70 - 652*b68*b71 - 756*b68*b72 - 301*b68*b73 - 280*b68*b74 - 286*b68*b75 - 441*b69*b70 - 865*b69*b71 - 689*b69*b72 - 444*b69*b73 - 619*b69*b74 - 440* b69*b75 - 729*b70*b71 - 31*b70*b72 - 117*b70*b73 - 97*b70*b74 - 771*b70* b75 - 481*b71*b72 - 675*b71*b73 - 709*b71*b74 - 927*b71*b75 - 567*b72*b73 - 856*b72*b74 - 497*b72*b75 - 353*b73*b74 - 586*b73*b75 - 965*b74*b75 - 124*b76*b77 - 895*b76*b78 - 582*b76*b79 - 545*b76*b80 - 814*b76*b81 - 367* b76*b82 - 434*b76*b83 - 364*b76*b84 - 43*b76*b85 - 750*b76*b86 - 87*b76* b87 - 808*b77*b78 - 276*b77*b79 - 178*b77*b80 - 788*b77*b81 - 584*b77*b82 - 403*b77*b83 - 651*b77*b84 - 754*b77*b85 - 399*b77*b86 - 932*b77*b87 - 60*b78*b79 - 676*b78*b80 - 368*b78*b81 - 739*b78*b82 - 12*b78*b83 - 226* b78*b84 - 586*b78*b85 - 94*b78*b86 - 539*b78*b87 - 795*b79*b80 - 570*b79* b81 - 434*b79*b82 - 378*b79*b83 - 467*b79*b84 - 601*b79*b85 - 97*b79*b86 - 902*b79*b87 - 317*b80*b81 - 492*b80*b82 - 652*b80*b83 - 756*b80*b84 - 301*b80*b85 - 280*b80*b86 - 286*b80*b87 - 441*b81*b82 - 865*b81*b83 - 689* b81*b84 - 444*b81*b85 - 619*b81*b86 - 440*b81*b87 - 729*b82*b83 - 31*b82* b84 - 117*b82*b85 - 97*b82*b86 - 771*b82*b87 - 481*b83*b84 - 675*b83*b85 - 709*b83*b86 - 927*b83*b87 - 567*b84*b85 - 856*b84*b86 - 497*b84*b87 - 353*b85*b86 - 586*b85*b87 - 965*b86*b87 - 808*b88*b89 - 276*b88*b90 - 178* b88*b91 - 788*b88*b92 - 584*b88*b93 - 403*b88*b94 - 651*b88*b95 - 754*b88* b96 - 399*b88*b97 - 932*b88*b98 - 60*b89*b90 - 676*b89*b91 - 368*b89*b92 - 739*b89*b93 - 12*b89*b94 - 226*b89*b95 - 586*b89*b96 - 94*b89*b97 - 539 *b89*b98 - 795*b90*b91 - 570*b90*b92 - 434*b90*b93 - 378*b90*b94 - 467*b90 *b95 - 601*b90*b96 - 97*b90*b97 - 902*b90*b98 - 317*b91*b92 - 492*b91*b93 - 652*b91*b94 - 756*b91*b95 - 301*b91*b96 - 280*b91*b97 - 286*b91*b98 - 441*b92*b93 - 865*b92*b94 - 689*b92*b95 - 444*b92*b96 - 619*b92*b97 - 440* b92*b98 - 729*b93*b94 - 31*b93*b95 - 117*b93*b96 - 97*b93*b97 - 771*b93* b98 - 481*b94*b95 - 675*b94*b96 - 709*b94*b97 - 927*b94*b98 - 567*b95*b96 - 856*b95*b97 - 497*b95*b98 - 353*b96*b97 - 586*b96*b98 - 965*b97*b98 - 60*b99*b100 - 676*b99*b101 - 368*b99*b102 - 739*b99*b103 - 12*b99*b104 - 226*b99*b105 - 586*b99*b106 - 94*b99*b107 - 539*b99*b108 - 795*b100*b101 - 570*b100*b102 - 434*b100*b103 - 378*b100*b104 - 467*b100*b105 - 601* b100*b106 - 97*b100*b107 - 902*b100*b108 - 317*b101*b102 - 492*b101*b103 - 652*b101*b104 - 756*b101*b105 - 301*b101*b106 - 280*b101*b107 - 286* b101*b108 - 441*b102*b103 - 865*b102*b104 - 689*b102*b105 - 444*b102*b106 - 619*b102*b107 - 440*b102*b108 - 729*b103*b104 - 31*b103*b105 - 117*b103 *b106 - 97*b103*b107 - 771*b103*b108 - 481*b104*b105 - 675*b104*b106 - 709 *b104*b107 - 927*b104*b108 - 567*b105*b106 - 856*b105*b107 - 497*b105*b108 - 353*b106*b107 - 586*b106*b108 - 965*b107*b108 - 795*b109*b110 - 570* b109*b111 - 434*b109*b112 - 378*b109*b113 - 467*b109*b114 - 601*b109*b115 - 97*b109*b116 - 902*b109*b117 - 317*b110*b111 - 492*b110*b112 - 652*b110 *b113 - 756*b110*b114 - 301*b110*b115 - 280*b110*b116 - 286*b110*b117 - 441*b111*b112 - 865*b111*b113 - 689*b111*b114 - 444*b111*b115 - 619*b111* b116 - 440*b111*b117 - 729*b112*b113 - 31*b112*b114 - 117*b112*b115 - 97* b112*b116 - 771*b112*b117 - 481*b113*b114 - 675*b113*b115 - 709*b113*b116 - 927*b113*b117 - 567*b114*b115 - 856*b114*b116 - 497*b114*b117 - 353* b115*b116 - 586*b115*b117 - 965*b116*b117 - 317*b118*b119 - 492*b118*b120 - 652*b118*b121 - 756*b118*b122 - 301*b118*b123 - 280*b118*b124 - 286* b118*b125 - 441*b119*b120 - 865*b119*b121 - 689*b119*b122 - 444*b119*b123 - 619*b119*b124 - 440*b119*b125 - 729*b120*b121 - 31*b120*b122 - 117*b120 *b123 - 97*b120*b124 - 771*b120*b125 - 481*b121*b122 - 675*b121*b123 - 709 *b121*b124 - 927*b121*b125 - 567*b122*b123 - 856*b122*b124 - 497*b122*b125 - 353*b123*b124 - 586*b123*b125 - 965*b124*b125 - 441*b126*b127 - 865* b126*b128 - 689*b126*b129 - 444*b126*b130 - 619*b126*b131 - 440*b126*b132 - 729*b127*b128 - 31*b127*b129 - 117*b127*b130 - 97*b127*b131 - 771*b127* b132 - 481*b128*b129 - 675*b128*b130 - 709*b128*b131 - 927*b128*b132 - 567 *b129*b130 - 856*b129*b131 - 497*b129*b132 - 353*b130*b131 - 586*b130*b132 - 965*b131*b132 - 729*b133*b134 - 31*b133*b135 - 117*b133*b136 - 97*b133* b137 - 771*b133*b138 - 481*b134*b135 - 675*b134*b136 - 709*b134*b137 - 927 *b134*b138 - 567*b135*b136 - 856*b135*b137 - 497*b135*b138 - 353*b136*b137 - 586*b136*b138 - 965*b137*b138 - 481*b139*b140 - 675*b139*b141 - 709* b139*b142 - 927*b139*b143 - 567*b140*b141 - 856*b140*b142 - 497*b140*b143 - 353*b141*b142 - 586*b141*b143 - 965*b142*b143 - 567*b144*b145 - 856* b144*b146 - 497*b144*b147 - 353*b145*b146 - 586*b145*b147 - 965*b146*b147 - 353*b148*b149 - 586*b148*b150 - 965*b149*b150 - 965*b151*b152 - objvar =E= 0; e2.. b2 + b18 =E= 1; e3.. b3 + b19 + b34 =E= 1; e4.. b4 + b20 + b35 + b49 =E= 1; e5.. b5 + b21 + b36 + b50 + b63 =E= 1; e6.. b6 + b22 + b37 + b51 + b64 + b76 =E= 1; e7.. b7 + b23 + b38 + b52 + b65 + b77 + b88 =E= 1; e8.. b8 + b24 + b39 + b53 + b66 + b78 + b89 + b99 =E= 1; e9.. b9 + b25 + b40 + b54 + b67 + b79 + b90 + b100 + b109 =E= 1; e10.. b10 + b26 + b41 + b55 + b68 + b80 + b91 + b101 + b110 + b118 =E= 1; e11.. b11 + b27 + b42 + b56 + b69 + b81 + b92 + b102 + b111 + b119 + b126 =E= 1; e12.. b12 + b28 + b43 + b57 + b70 + b82 + b93 + b103 + b112 + b120 + b127 + b133 =E= 1; e13.. b13 + b29 + b44 + b58 + b71 + b83 + b94 + b104 + b113 + b121 + b128 + b134 + b139 =E= 1; e14.. b14 + b30 + b45 + b59 + b72 + b84 + b95 + b105 + b114 + b122 + b129 + b135 + b140 + b144 =E= 1; e15.. b15 + b31 + b46 + b60 + b73 + b85 + b96 + b106 + b115 + b123 + b130 + b136 + b141 + b145 + b148 =E= 1; e16.. b16 + b32 + b47 + b61 + b74 + b86 + b97 + b107 + b116 + b124 + b131 + b137 + b142 + b146 + b149 + b151 =E= 1; e17.. b17 + b33 + b48 + b62 + b75 + b87 + b98 + b108 + b117 + b125 + b132 + b138 + b143 + b147 + b150 + b152 + b153 =E= 1; e18.. - b18 + b19 =L= 0; e19.. - b18 + b20 =L= 0; e20.. - b18 + b21 =L= 0; e21.. - b18 + b22 =L= 0; e22.. - b18 + b23 =L= 0; e23.. - b18 + b24 =L= 0; e24.. - b18 + b25 =L= 0; e25.. - b18 + b26 =L= 0; e26.. - b18 + b27 =L= 0; e27.. - b18 + b28 =L= 0; e28.. - b18 + b29 =L= 0; e29.. - b18 + b30 =L= 0; e30.. - b18 + b31 =L= 0; e31.. - b18 + b32 =L= 0; e32.. - b18 + b33 =L= 0; e33.. - b34 + b35 =L= 0; e34.. - b34 + b36 =L= 0; e35.. - b34 + b37 =L= 0; e36.. - b34 + b38 =L= 0; e37.. - b34 + b39 =L= 0; e38.. - b34 + b40 =L= 0; e39.. - b34 + b41 =L= 0; e40.. - b34 + b42 =L= 0; e41.. - b34 + b43 =L= 0; e42.. - b34 + b44 =L= 0; e43.. - b34 + b45 =L= 0; e44.. - b34 + b46 =L= 0; e45.. - b34 + b47 =L= 0; e46.. - b34 + b48 =L= 0; e47.. - b49 + b50 =L= 0; e48.. - b49 + b51 =L= 0; e49.. - b49 + b52 =L= 0; e50.. - b49 + b53 =L= 0; e51.. - b49 + b54 =L= 0; e52.. - b49 + b55 =L= 0; e53.. - b49 + b56 =L= 0; e54.. - b49 + b57 =L= 0; e55.. - b49 + b58 =L= 0; e56.. - b49 + b59 =L= 0; e57.. - b49 + b60 =L= 0; e58.. - b49 + b61 =L= 0; e59.. - b49 + b62 =L= 0; e60.. - b63 + b64 =L= 0; e61.. - b63 + b65 =L= 0; e62.. - b63 + b66 =L= 0; e63.. - b63 + b67 =L= 0; e64.. - b63 + b68 =L= 0; e65.. - b63 + b69 =L= 0; e66.. - b63 + b70 =L= 0; e67.. - b63 + b71 =L= 0; e68.. - b63 + b72 =L= 0; e69.. - b63 + b73 =L= 0; e70.. - b63 + b74 =L= 0; e71.. - b63 + b75 =L= 0; e72.. - b76 + b77 =L= 0; e73.. - b76 + b78 =L= 0; e74.. - b76 + b79 =L= 0; e75.. - b76 + b80 =L= 0; e76.. - b76 + b81 =L= 0; e77.. - b76 + b82 =L= 0; e78.. - b76 + b83 =L= 0; e79.. - b76 + b84 =L= 0; e80.. - b76 + b85 =L= 0; e81.. - b76 + b86 =L= 0; e82.. - b76 + b87 =L= 0; e83.. - b88 + b89 =L= 0; e84.. - b88 + b90 =L= 0; e85.. - b88 + b91 =L= 0; e86.. - b88 + b92 =L= 0; e87.. - b88 + b93 =L= 0; e88.. - b88 + b94 =L= 0; e89.. - b88 + b95 =L= 0; e90.. - b88 + b96 =L= 0; e91.. - b88 + b97 =L= 0; e92.. - b88 + b98 =L= 0; e93.. - b99 + b100 =L= 0; e94.. - b99 + b101 =L= 0; e95.. - b99 + b102 =L= 0; e96.. - b99 + b103 =L= 0; e97.. - b99 + b104 =L= 0; e98.. - b99 + b105 =L= 0; e99.. - b99 + b106 =L= 0; e100.. - b99 + b107 =L= 0; e101.. - b99 + b108 =L= 0; e102.. - b109 + b110 =L= 0; e103.. - b109 + b111 =L= 0; e104.. - b109 + b112 =L= 0; e105.. - b109 + b113 =L= 0; e106.. - b109 + b114 =L= 0; e107.. - b109 + b115 =L= 0; e108.. - b109 + b116 =L= 0; e109.. - b109 + b117 =L= 0; e110.. - b118 + b119 =L= 0; e111.. - b118 + b120 =L= 0; e112.. - b118 + b121 =L= 0; e113.. - b118 + b122 =L= 0; e114.. - b118 + b123 =L= 0; e115.. - b118 + b124 =L= 0; e116.. - b118 + b125 =L= 0; e117.. - b126 + b127 =L= 0; e118.. - b126 + b128 =L= 0; e119.. - b126 + b129 =L= 0; e120.. - b126 + b130 =L= 0; e121.. - b126 + b131 =L= 0; e122.. - b126 + b132 =L= 0; e123.. - b133 + b134 =L= 0; e124.. - b133 + b135 =L= 0; e125.. - b133 + b136 =L= 0; e126.. - b133 + b137 =L= 0; e127.. - b133 + b138 =L= 0; e128.. - b139 + b140 =L= 0; e129.. - b139 + b141 =L= 0; e130.. - b139 + b142 =L= 0; e131.. - b139 + b143 =L= 0; e132.. - b144 + b145 =L= 0; e133.. - b144 + b146 =L= 0; e134.. - b144 + b147 =L= 0; e135.. - b148 + b149 =L= 0; e136.. - b148 + b150 =L= 0; e137.. - b151 + b152 =L= 0; e138.. 6877*b2 - 540*b3*b2 + 5286*b3 - 426*b4*b2 + 7843*b4 - 172*b5*b2 + 7235* b5 - 736*b6*b2 + 6993*b6 - 211*b7*b2 + 6782*b7 - 368*b8*b2 + 6158*b8 - 567*b9*b2 + 7417*b9 - 429*b10*b2 + 6660*b10 - 782*b11*b2 + 8001*b11 - 530*b12*b2 + 5801*b12 - 862*b13*b2 + 8841*b13 - 123*b14*b2 + 7883*b14 - 67*b15*b2 + 7117*b15 - 135*b16*b2 + 7448*b16 - 929*b17*b2 + 9672*b17 - 802*b4*b3 - 22*b5*b3 - 58*b6*b3 - 69*b7*b3 - 167*b8*b3 - 393*b9*b3 - 456 *b10*b3 - 11*b11*b3 - 42*b12*b3 - 229*b13*b3 - 373*b14*b3 - 421*b15*b3 - 919*b16*b3 - 784*b17*b3 - 537*b5*b4 - 198*b6*b4 - 324*b7*b4 - 315*b8* b4 - 370*b9*b4 - 413*b10*b4 - 526*b11*b4 - 91*b12*b4 - 980*b13*b4 - 956* b14*b4 - 873*b15*b4 - 862*b16*b4 - 170*b17*b4 - 996*b6*b5 - 281*b7*b5 - 305*b8*b5 - 925*b9*b5 - 84*b10*b5 - 327*b11*b5 - 336*b12*b5 - 505*b13*b5 - 846*b14*b5 - 729*b15*b5 - 313*b16*b5 - 857*b17*b5 - 124*b7*b6 - 895* b8*b6 - 582*b9*b6 - 545*b10*b6 - 814*b11*b6 - 367*b12*b6 - 434*b13*b6 - 364*b14*b6 - 43*b15*b6 - 750*b16*b6 - 87*b17*b6 - 808*b8*b7 - 276*b9*b7 - 178*b10*b7 - 788*b11*b7 - 584*b12*b7 - 403*b13*b7 - 651*b14*b7 - 754* b15*b7 - 399*b16*b7 - 932*b17*b7 - 60*b9*b8 - 676*b10*b8 - 368*b11*b8 - 739*b12*b8 - 12*b13*b8 - 226*b14*b8 - 586*b15*b8 - 94*b16*b8 - 539*b17* b8 - 795*b10*b9 - 570*b11*b9 - 434*b12*b9 - 378*b13*b9 - 467*b14*b9 - 601*b15*b9 - 97*b16*b9 - 902*b17*b9 - 317*b11*b10 - 492*b12*b10 - 652* b13*b10 - 756*b14*b10 - 301*b15*b10 - 280*b16*b10 - 286*b17*b10 - 441* b12*b11 - 865*b13*b11 - 689*b14*b11 - 444*b15*b11 - 619*b16*b11 - 440* b17*b11 - 729*b13*b12 - 31*b14*b12 - 117*b15*b12 - 97*b16*b12 - 771*b17* b12 - 481*b14*b13 - 675*b15*b13 - 709*b16*b13 - 927*b17*b13 - 567*b15* b14 - 856*b16*b14 - 497*b17*b14 - 353*b16*b15 - 586*b17*b15 - 965*b17* b16 =L= 11136; e139.. (-540*b19*b18) - 12740*b18 + 6172*b19 - 426*b20*b18 + 8620*b20 - 172*b21 *b18 + 8150*b21 - 736*b22*b18 + 7786*b22 - 211*b23*b18 + 7117*b23 - 368* b24*b18 + 6544*b24 - 567*b25*b18 + 7909*b25 - 429*b26*b18 + 7309*b26 - 782*b27*b18 + 8422*b27 - 530*b28*b18 + 6163*b28 - 862*b29*b18 + 8868*b29 - 123*b30*b18 + 8573*b30 - 67*b31*b18 + 7176*b31 - 135*b32*b18 + 8211* b32 - 929*b33*b18 + 10598*b33 - 802*b20*b19 - 22*b21*b19 - 58*b22*b19 - 69*b23*b19 - 167*b24*b19 - 393*b25*b19 - 456*b26*b19 - 11*b27*b19 - 42* b28*b19 - 229*b29*b19 - 373*b30*b19 - 421*b31*b19 - 919*b32*b19 - 784* b33*b19 - 537*b21*b20 - 198*b22*b20 - 324*b23*b20 - 315*b24*b20 - 370* b25*b20 - 413*b26*b20 - 526*b27*b20 - 91*b28*b20 - 980*b29*b20 - 956*b30 *b20 - 873*b31*b20 - 862*b32*b20 - 170*b33*b20 - 996*b22*b21 - 281*b23* b21 - 305*b24*b21 - 925*b25*b21 - 84*b26*b21 - 327*b27*b21 - 336*b28*b21 - 505*b29*b21 - 846*b30*b21 - 729*b31*b21 - 313*b32*b21 - 857*b33*b21 - 124*b23*b22 - 895*b24*b22 - 582*b25*b22 - 545*b26*b22 - 814*b27*b22 - 367*b28*b22 - 434*b29*b22 - 364*b30*b22 - 43*b31*b22 - 750*b32*b22 - 87*b33*b22 - 808*b24*b23 - 276*b25*b23 - 178*b26*b23 - 788*b27*b23 - 584 *b28*b23 - 403*b29*b23 - 651*b30*b23 - 754*b31*b23 - 399*b32*b23 - 932* b33*b23 - 60*b25*b24 - 676*b26*b24 - 368*b27*b24 - 739*b28*b24 - 12*b29* b24 - 226*b30*b24 - 586*b31*b24 - 94*b32*b24 - 539*b33*b24 - 795*b26*b25 - 570*b27*b25 - 434*b28*b25 - 378*b29*b25 - 467*b30*b25 - 601*b31*b25 - 97*b32*b25 - 902*b33*b25 - 317*b27*b26 - 492*b28*b26 - 652*b29*b26 - 756*b30*b26 - 301*b31*b26 - 280*b32*b26 - 286*b33*b26 - 441*b28*b27 - 865*b29*b27 - 689*b30*b27 - 444*b31*b27 - 619*b32*b27 - 440*b33*b27 - 729*b29*b28 - 31*b30*b28 - 117*b31*b28 - 97*b32*b28 - 771*b33*b28 - 481* b30*b29 - 675*b31*b29 - 709*b32*b29 - 927*b33*b29 - 567*b31*b30 - 856* b32*b30 - 497*b33*b30 - 353*b32*b31 - 586*b33*b31 - 965*b33*b32 =L= 0; e140.. (-802*b35*b34) - 13828*b34 + 8620*b35 - 22*b36*b34 + 8150*b36 - 58*b37* b34 + 7786*b37 - 69*b38*b34 + 7117*b38 - 167*b39*b34 + 6544*b39 - 393* b40*b34 + 7909*b40 - 456*b41*b34 + 7309*b41 - 11*b42*b34 + 8422*b42 - 42 *b43*b34 + 6163*b43 - 229*b44*b34 + 8868*b44 - 373*b45*b34 + 8573*b45 - 421*b46*b34 + 7176*b46 - 919*b47*b34 + 8211*b47 - 784*b48*b34 + 10598* b48 - 537*b36*b35 - 198*b37*b35 - 324*b38*b35 - 315*b39*b35 - 370*b40* b35 - 413*b41*b35 - 526*b42*b35 - 91*b43*b35 - 980*b44*b35 - 956*b45*b35 - 873*b46*b35 - 862*b47*b35 - 170*b48*b35 - 996*b37*b36 - 281*b38*b36 - 305*b39*b36 - 925*b40*b36 - 84*b41*b36 - 327*b42*b36 - 336*b43*b36 - 505*b44*b36 - 846*b45*b36 - 729*b46*b36 - 313*b47*b36 - 857*b48*b36 - 124*b38*b37 - 895*b39*b37 - 582*b40*b37 - 545*b41*b37 - 814*b42*b37 - 367*b43*b37 - 434*b44*b37 - 364*b45*b37 - 43*b46*b37 - 750*b47*b37 - 87* b48*b37 - 808*b39*b38 - 276*b40*b38 - 178*b41*b38 - 788*b42*b38 - 584* b43*b38 - 403*b44*b38 - 651*b45*b38 - 754*b46*b38 - 399*b47*b38 - 932* b48*b38 - 60*b40*b39 - 676*b41*b39 - 368*b42*b39 - 739*b43*b39 - 12*b44* b39 - 226*b45*b39 - 586*b46*b39 - 94*b47*b39 - 539*b48*b39 - 795*b41*b40 - 570*b42*b40 - 434*b43*b40 - 378*b44*b40 - 467*b45*b40 - 601*b46*b40 - 97*b47*b40 - 902*b48*b40 - 317*b42*b41 - 492*b43*b41 - 652*b44*b41 - 756*b45*b41 - 301*b46*b41 - 280*b47*b41 - 286*b48*b41 - 441*b43*b42 - 865*b44*b42 - 689*b45*b42 - 444*b46*b42 - 619*b47*b42 - 440*b48*b42 - 729*b44*b43 - 31*b45*b43 - 117*b46*b43 - 97*b47*b43 - 771*b48*b43 - 481* b45*b44 - 675*b46*b44 - 709*b47*b44 - 927*b48*b44 - 567*b46*b45 - 856* b47*b45 - 497*b48*b45 - 353*b47*b46 - 586*b48*b46 - 965*b48*b47 =L= 0; e141.. (-537*b50*b49) - 11380*b49 + 8150*b50 - 198*b51*b49 + 7786*b51 - 324*b52 *b49 + 7117*b52 - 315*b53*b49 + 6544*b53 - 370*b54*b49 + 7909*b54 - 413* b55*b49 + 7309*b55 - 526*b56*b49 + 8422*b56 - 91*b57*b49 + 6163*b57 - 980*b58*b49 + 8868*b58 - 956*b59*b49 + 8573*b59 - 873*b60*b49 + 7176*b60 - 862*b61*b49 + 8211*b61 - 170*b62*b49 + 10598*b62 - 996*b51*b50 - 281* b52*b50 - 305*b53*b50 - 925*b54*b50 - 84*b55*b50 - 327*b56*b50 - 336*b57 *b50 - 505*b58*b50 - 846*b59*b50 - 729*b60*b50 - 313*b61*b50 - 857*b62* b50 - 124*b52*b51 - 895*b53*b51 - 582*b54*b51 - 545*b55*b51 - 814*b56* b51 - 367*b57*b51 - 434*b58*b51 - 364*b59*b51 - 43*b60*b51 - 750*b61*b51 - 87*b62*b51 - 808*b53*b52 - 276*b54*b52 - 178*b55*b52 - 788*b56*b52 - 584*b57*b52 - 403*b58*b52 - 651*b59*b52 - 754*b60*b52 - 399*b61*b52 - 932*b62*b52 - 60*b54*b53 - 676*b55*b53 - 368*b56*b53 - 739*b57*b53 - 12* b58*b53 - 226*b59*b53 - 586*b60*b53 - 94*b61*b53 - 539*b62*b53 - 795*b55 *b54 - 570*b56*b54 - 434*b57*b54 - 378*b58*b54 - 467*b59*b54 - 601*b60* b54 - 97*b61*b54 - 902*b62*b54 - 317*b56*b55 - 492*b57*b55 - 652*b58*b55 - 756*b59*b55 - 301*b60*b55 - 280*b61*b55 - 286*b62*b55 - 441*b57*b56 - 865*b58*b56 - 689*b59*b56 - 444*b60*b56 - 619*b61*b56 - 440*b62*b56 - 729*b58*b57 - 31*b59*b57 - 117*b60*b57 - 97*b61*b57 - 771*b62*b57 - 481*b59*b58 - 675*b60*b58 - 709*b61*b58 - 927*b62*b58 - 567*b60*b59 - 856*b61*b59 - 497*b62*b59 - 353*b61*b60 - 586*b62*b60 - 965*b62*b61 =L= 0; e142.. (-996*b64*b63) - 11850*b63 + 7786*b64 - 281*b65*b63 + 7117*b65 - 305*b66 *b63 + 6544*b66 - 925*b67*b63 + 7909*b67 - 84*b68*b63 + 7309*b68 - 327* b69*b63 + 8422*b69 - 336*b70*b63 + 6163*b70 - 505*b71*b63 + 8868*b71 - 846*b72*b63 + 8573*b72 - 729*b73*b63 + 7176*b73 - 313*b74*b63 + 8211*b74 - 857*b75*b63 + 10598*b75 - 124*b65*b64 - 895*b66*b64 - 582*b67*b64 - 545*b68*b64 - 814*b69*b64 - 367*b70*b64 - 434*b71*b64 - 364*b72*b64 - 43 *b73*b64 - 750*b74*b64 - 87*b75*b64 - 808*b66*b65 - 276*b67*b65 - 178* b68*b65 - 788*b69*b65 - 584*b70*b65 - 403*b71*b65 - 651*b72*b65 - 754* b73*b65 - 399*b74*b65 - 932*b75*b65 - 60*b67*b66 - 676*b68*b66 - 368*b69 *b66 - 739*b70*b66 - 12*b71*b66 - 226*b72*b66 - 586*b73*b66 - 94*b74*b66 - 539*b75*b66 - 795*b68*b67 - 570*b69*b67 - 434*b70*b67 - 378*b71*b67 - 467*b72*b67 - 601*b73*b67 - 97*b74*b67 - 902*b75*b67 - 317*b69*b68 - 492*b70*b68 - 652*b71*b68 - 756*b72*b68 - 301*b73*b68 - 280*b74*b68 - 286*b75*b68 - 441*b70*b69 - 865*b71*b69 - 689*b72*b69 - 444*b73*b69 - 619*b74*b69 - 440*b75*b69 - 729*b71*b70 - 31*b72*b70 - 117*b73*b70 - 97* b74*b70 - 771*b75*b70 - 481*b72*b71 - 675*b73*b71 - 709*b74*b71 - 927* b75*b71 - 567*b73*b72 - 856*b74*b72 - 497*b75*b72 - 353*b74*b73 - 586* b75*b73 - 965*b75*b74 =L= 0; e143.. (-124*b77*b76) - 12214*b76 + 7117*b77 - 895*b78*b76 + 6544*b78 - 582*b79 *b76 + 7909*b79 - 545*b80*b76 + 7309*b80 - 814*b81*b76 + 8422*b81 - 367* b82*b76 + 6163*b82 - 434*b83*b76 + 8868*b83 - 364*b84*b76 + 8573*b84 - 43*b85*b76 + 7176*b85 - 750*b86*b76 + 8211*b86 - 87*b87*b76 + 10598*b87 - 808*b78*b77 - 276*b79*b77 - 178*b80*b77 - 788*b81*b77 - 584*b82*b77 - 403*b83*b77 - 651*b84*b77 - 754*b85*b77 - 399*b86*b77 - 932*b87*b77 - 60*b79*b78 - 676*b80*b78 - 368*b81*b78 - 739*b82*b78 - 12*b83*b78 - 226*b84*b78 - 586*b85*b78 - 94*b86*b78 - 539*b87*b78 - 795*b80*b79 - 570 *b81*b79 - 434*b82*b79 - 378*b83*b79 - 467*b84*b79 - 601*b85*b79 - 97* b86*b79 - 902*b87*b79 - 317*b81*b80 - 492*b82*b80 - 652*b83*b80 - 756* b84*b80 - 301*b85*b80 - 280*b86*b80 - 286*b87*b80 - 441*b82*b81 - 865* b83*b81 - 689*b84*b81 - 444*b85*b81 - 619*b86*b81 - 440*b87*b81 - 729* b83*b82 - 31*b84*b82 - 117*b85*b82 - 97*b86*b82 - 771*b87*b82 - 481*b84* b83 - 675*b85*b83 - 709*b86*b83 - 927*b87*b83 - 567*b85*b84 - 856*b86* b84 - 497*b87*b84 - 353*b86*b85 - 586*b87*b85 - 965*b87*b86 =L= 0; e144.. (-808*b89*b88) - 12883*b88 + 6544*b89 - 276*b90*b88 + 7909*b90 - 178*b91 *b88 + 7309*b91 - 788*b92*b88 + 8422*b92 - 584*b93*b88 + 6163*b93 - 403* b94*b88 + 8868*b94 - 651*b95*b88 + 8573*b95 - 754*b96*b88 + 7176*b96 - 399*b97*b88 + 8211*b97 - 932*b98*b88 + 10598*b98 - 60*b90*b89 - 676*b91* b89 - 368*b92*b89 - 739*b93*b89 - 12*b94*b89 - 226*b95*b89 - 586*b96*b89 - 94*b97*b89 - 539*b98*b89 - 795*b91*b90 - 570*b92*b90 - 434*b93*b90 - 378*b94*b90 - 467*b95*b90 - 601*b96*b90 - 97*b97*b90 - 902*b98*b90 - 317 *b92*b91 - 492*b93*b91 - 652*b94*b91 - 756*b95*b91 - 301*b96*b91 - 280* b97*b91 - 286*b98*b91 - 441*b93*b92 - 865*b94*b92 - 689*b95*b92 - 444* b96*b92 - 619*b97*b92 - 440*b98*b92 - 729*b94*b93 - 31*b95*b93 - 117*b96 *b93 - 97*b97*b93 - 771*b98*b93 - 481*b95*b94 - 675*b96*b94 - 709*b97* b94 - 927*b98*b94 - 567*b96*b95 - 856*b97*b95 - 497*b98*b95 - 353*b97* b96 - 586*b98*b96 - 965*b98*b97 =L= 0; e145.. (-60*b100*b99) - 13456*b99 + 7909*b100 - 676*b101*b99 + 7309*b101 - 368* b102*b99 + 8422*b102 - 739*b103*b99 + 6163*b103 - 12*b104*b99 + 8868* b104 - 226*b105*b99 + 8573*b105 - 586*b106*b99 + 7176*b106 - 94*b107*b99 + 8211*b107 - 539*b108*b99 + 10598*b108 - 795*b101*b100 - 570*b102*b100 - 434*b103*b100 - 378*b104*b100 - 467*b105*b100 - 601*b106*b100 - 97* b107*b100 - 902*b108*b100 - 317*b102*b101 - 492*b103*b101 - 652*b104* b101 - 756*b105*b101 - 301*b106*b101 - 280*b107*b101 - 286*b108*b101 - 441*b103*b102 - 865*b104*b102 - 689*b105*b102 - 444*b106*b102 - 619*b107 *b102 - 440*b108*b102 - 729*b104*b103 - 31*b105*b103 - 117*b106*b103 - 97*b107*b103 - 771*b108*b103 - 481*b105*b104 - 675*b106*b104 - 709*b107* b104 - 927*b108*b104 - 567*b106*b105 - 856*b107*b105 - 497*b108*b105 - 353*b107*b106 - 586*b108*b106 - 965*b108*b107 =L= 0; e146.. (-795*b110*b109) - 12091*b109 + 7309*b110 - 570*b111*b109 + 8422*b111 - 434*b112*b109 + 6163*b112 - 378*b113*b109 + 8868*b113 - 467*b114*b109 + 8573*b114 - 601*b115*b109 + 7176*b115 - 97*b116*b109 + 8211*b116 - 902* b117*b109 + 10598*b117 - 317*b111*b110 - 492*b112*b110 - 652*b113*b110 - 756*b114*b110 - 301*b115*b110 - 280*b116*b110 - 286*b117*b110 - 441* b112*b111 - 865*b113*b111 - 689*b114*b111 - 444*b115*b111 - 619*b116* b111 - 440*b117*b111 - 729*b113*b112 - 31*b114*b112 - 117*b115*b112 - 97 *b116*b112 - 771*b117*b112 - 481*b114*b113 - 675*b115*b113 - 709*b116* b113 - 927*b117*b113 - 567*b115*b114 - 856*b116*b114 - 497*b117*b114 - 353*b116*b115 - 586*b117*b115 - 965*b117*b116 =L= 0; e147.. (-317*b119*b118) - 12691*b118 + 8422*b119 - 492*b120*b118 + 6163*b120 - 652*b121*b118 + 8868*b121 - 756*b122*b118 + 8573*b122 - 301*b123*b118 + 7176*b123 - 280*b124*b118 + 8211*b124 - 286*b125*b118 + 10598*b125 - 441 *b120*b119 - 865*b121*b119 - 689*b122*b119 - 444*b123*b119 - 619*b124* b119 - 440*b125*b119 - 729*b121*b120 - 31*b122*b120 - 117*b123*b120 - 97 *b124*b120 - 771*b125*b120 - 481*b122*b121 - 675*b123*b121 - 709*b124* b121 - 927*b125*b121 - 567*b123*b122 - 856*b124*b122 - 497*b125*b122 - 353*b124*b123 - 586*b125*b123 - 965*b125*b124 =L= 0; e148.. (-441*b127*b126) - 11578*b126 + 6163*b127 - 865*b128*b126 + 8868*b128 - 689*b129*b126 + 8573*b129 - 444*b130*b126 + 7176*b130 - 619*b131*b126 + 8211*b131 - 440*b132*b126 + 10598*b132 - 729*b128*b127 - 31*b129*b127 - 117*b130*b127 - 97*b131*b127 - 771*b132*b127 - 481*b129*b128 - 675*b130* b128 - 709*b131*b128 - 927*b132*b128 - 567*b130*b129 - 856*b131*b129 - 497*b132*b129 - 353*b131*b130 - 586*b132*b130 - 965*b132*b131 =L= 0; e149.. (-729*b134*b133) - 13837*b133 + 8868*b134 - 31*b135*b133 + 8573*b135 - 117*b136*b133 + 7176*b136 - 97*b137*b133 + 8211*b137 - 771*b138*b133 + 10598*b138 - 481*b135*b134 - 675*b136*b134 - 709*b137*b134 - 927*b138* b134 - 567*b136*b135 - 856*b137*b135 - 497*b138*b135 - 353*b137*b136 - 586*b138*b136 - 965*b138*b137 =L= 0; e150.. (-481*b140*b139) - 11132*b139 + 8573*b140 - 675*b141*b139 + 7176*b141 - 709*b142*b139 + 8211*b142 - 927*b143*b139 + 10598*b143 - 567*b141*b140 - 856*b142*b140 - 497*b143*b140 - 353*b142*b141 - 586*b143*b141 - 965* b143*b142 =L= 0; e151.. (-567*b145*b144) - 11427*b144 + 7176*b145 - 856*b146*b144 + 8211*b146 - 497*b147*b144 + 10598*b147 - 353*b146*b145 - 586*b147*b145 - 965*b147* b146 =L= 0; e152.. (-353*b149*b148) - 12824*b148 + 8211*b149 - 586*b150*b148 + 10598*b150 - 965*b150*b149 =L= 0; e153.. (-965*b152*b151) - 11789*b151 + 10598*b152 =L= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91