MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sporttournament06
This is a quadratic model for the max-cut problem. The instance arises when minimizing so-called breaks in sports tournaments.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 12.00000001 (ANTIGONE) 12.00000002 (BARON) 12.00000000 (COUENNE) 12.00000026 (CPLEX) 12.00000000 (GUROBI) 12.00000000 (LINDO) 12.00000000 (SCIP) 12.00000000 (SHOT) |
Referencesⓘ | Elf, Matthias, Jünger, Michael, and Rinaldi, Giovanni, Minimizing Breaks by Maximizing Cuts, Operations Research Letters, 31:5, 2003, 343-349. |
Sourceⓘ | POLIP instance maxcut/sched-6-4711 |
Applicationⓘ | Sports Tournament |
Added to libraryⓘ | 26 Feb 2014 |
Problem typeⓘ | MBQCP |
#Variablesⓘ | 16 |
#Binary Variablesⓘ | 15 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 15 |
#Nonlinear Binary Variablesⓘ | 15 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | max |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 1 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 16 |
#Nonlinear Nonzeros in Jacobianⓘ | 15 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 48 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 15 |
Maximal blocksize in Hessian of Lagrangianⓘ | 15 |
Average blocksize in Hessian of Lagrangianⓘ | 15.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 4.0000e+00 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 1 0 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 16 1 15 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 16 1 15 0 * * Solve m using MINLP maximizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,objvar; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15; Equations e1; e1.. 2*b1*b3 - 2*b1 + 2*b3 + 2*b1*b7 - 2*b7 + 2*b2*b5 - 2*b2 - 2*b5 + 2*b2*b10 - 4*b10 - 2*b3*b4 + 2*b4 - 2*b3*b12 - 2*b3*b14 - 2*b4*b5 + 2*b4*b9 - 2*b9 - 2*b4*b15 + 2*b5*b6 - 2*b6 + 2*b5*b8 - 2*b8 + 2*b6*b9 - 2*b7*b8 + 2*b7* b12 + 2*b7*b13 + 2*b8*b10 + 2*b8*b15 + 2*b9*b11 - 2*b11 - 2*b9*b12 + 2*b10 *b11 + 2*b10*b12 - 2*b13*b15 + 2*b14*b15 + objvar =L= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% maximizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91