MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance sporttournament10
This is a quadratic model for the max-cut problem. The instance arises when minimizing so-called breaks in sports tournaments.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 44.00000004 (ANTIGONE) 44.00000004 (BARON) 44.00000000 (COUENNE) 44.00000079 (CPLEX) 44.00000000 (GUROBI) 44.00000000 (LINDO) 44.00000000 (SCIP) 44.00000000 (SHOT) |
Referencesⓘ | Elf, Matthias, Jünger, Michael, and Rinaldi, Giovanni, Minimizing Breaks by Maximizing Cuts, Operations Research Letters, 31:5, 2003, 343-349. |
Sourceⓘ | POLIP instance maxcut/sched-10-4711 |
Applicationⓘ | Sports Tournament |
Added to libraryⓘ | 26 Feb 2014 |
Problem typeⓘ | MBQCP |
#Variablesⓘ | 46 |
#Binary Variablesⓘ | 45 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 45 |
#Nonlinear Binary Variablesⓘ | 45 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | max |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 1 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 1 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 46 |
#Nonlinear Nonzeros in Jacobianⓘ | 45 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 160 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 45 |
Maximal blocksize in Hessian of Lagrangianⓘ | 45 |
Average blocksize in Hessian of Lagrangianⓘ | 45.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 4.0000e+00 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 1 0 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 46 1 45 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 46 1 45 0 * * Solve m using MINLP maximizing objvar; Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36 ,b37,b38,b39,b40,b41,b42,b43,b44,b45,objvar; Binary Variables b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17 ,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34 ,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45; Equations e1; e1.. 2*b1*b14 - 2*b1 - 4*b14 + 2*b1*b34 + 2*b1*b35 - 2*b1*b39 + 2*b2*b3 - 2*b2 - 2*b3 + 2*b2*b31 - 4*b31 + 2*b3*b4 - 2*b4 + 2*b3*b8 - 4*b8 - 2*b3*b43 + 2*b4*b9 - 4*b9 + 2*b5*b7 - 2*b5 - 4*b7 + 2*b5*b11 - 2*b11 + 2*b6*b7 - 2*b6 + 2*b6*b11 + 2*b7*b13 - 2*b13 + 2*b7*b42 + 2*b8*b19 - 4*b19 + 2*b8*b28 - 2*b28 + 2*b8*b44 + 2*b9*b10 - 2*b10 + 2*b9*b18 - 2*b18 + 2*b9*b43 + 2*b10* b19 + 2*b11*b36 - 2*b11*b40 - 2*b12*b13 + 2*b12 - 2*b12*b38 + 2*b12*b40 - 2*b12*b45 + 2*b13*b14 + 2*b13*b25 - 2*b25 + 2*b14*b16 - 2*b16 + 2*b14*b40 - 2*b15*b17 - 2*b15 - 2*b17 + 2*b15*b25 + 2*b15*b35 + 2*b15*b41 + 2*b16* b17 + 2*b16*b26 - 2*b26 - 2*b16*b44 + 2*b17*b18 + 2*b17*b43 + 2*b18*b30 - 2*b30 - 2*b18*b35 + 2*b19*b20 - 2*b20 + 2*b19*b29 - 2*b29 + 2*b20*b30 - 2* b21*b22 + 2*b21 + 2*b22 - 2*b21*b23 - 2*b23 - 2*b22*b24 - 2*b24 - 2*b22* b36 + 2*b22*b38 + 2*b23*b24 + 2*b23*b42 + 2*b23*b45 + 2*b24*b26 + 2*b24* b39 - 2*b25*b27 - 2*b27 + 2*b25*b36 + 2*b26*b27 - 2*b26*b42 + 2*b27*b28 + 2*b27*b44 + 2*b28*b29 - 2*b28*b37 + 2*b29*b31 - 2*b29*b34 + 2*b30*b32 - 2* b32 - 2*b30*b33 + 2*b31*b32 + 2*b31*b33 + 2*b33*b34 - 2*b33*b35 - 2*b34* b37 - 2*b36*b41 + 2*b37*b39 + 2*b37*b41 - 2*b39*b40 - 2*b41*b42 - 2*b43* b44 + objvar =L= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% maximizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91