MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance st_e06

Formats ams gms mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
0.00000000 p1 ( gdx sol )
(infeas: 3e-10)
Other points (infeas > 1e-08)  
Dual Bounds
0.00000000 (ANTIGONE)
0.00000000 (BARON)
0.00000000 (COUENNE)
0.00000000 (LINDO)
0.00000000 (SCIP)
References Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002.
Liebman, J, Lasdon, L S, Schrage, L, and Waren, A D, Modeling and Optimization with GINO, The Scientific Press, Palo Alto, CA, 1986.
Source BARON book instance misc/e06
Added to library 03 Sep 2002
Problem type NLP
#Variables 3
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 3
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type constant
Objective curvature linear
#Nonzeros in Objective 0
#Nonlinear Nonzeros in Objective 0
#Constraints 3
#Linear Constraints 2
#Quadratic Constraints 0
#Polynomial Constraints 1
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 8
#Nonlinear Nonzeros in Jacobian 3
#Nonzeros in (Upper-Left) Hessian of Lagrangian 4
#Nonzeros in Diagonal of Hessian of Lagrangian 2
#Blocks in Hessian of Lagrangian 2
Minimal blocksize in Hessian of Lagrangian 1
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 1.5
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.6900e-04
Maximal coefficient 3.0000e+00
Infeasibility of initial point 50
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          4        4        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          4        4        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*          9        6        3        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,objvar;

Positive Variables  x1,x2,x3;

Equations  e1,e2,e3,e4;


e1.. x3*x3 - 0.000169*POWER(x2,3)*x1 =E= 0;

e2..    x1 + x2 + x3 =E= 50;

e3..  - 3*x1 + x2 =E= 0;

e4..    objvar =E= 0;

* set non-default bounds
x1.up = 12.5;
x2.up = 37.5;
x3.up = 50;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0