MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance st_e37
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 0.00104167 (ANTIGONE) 0.00104172 (BARON) 0.00104172 (COUENNE) 0.00104171 (LINDO) 0.00104123 (SCIP) |
Referencesⓘ | Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. Beck, J V and Arnold, K J, Parameter Estimation in Engineering and Science, Wiley, New York, 1977. |
Sourceⓘ | BARON book instance misc/e37 |
Added to libraryⓘ | 03 Sep 2002 |
Problem typeⓘ | NLP |
#Variablesⓘ | 4 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 4 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | nonconcave |
#Nonzeros in Objectiveⓘ | 4 |
#Nonlinear Nonzeros in Objectiveⓘ | 4 |
#Constraintsⓘ | 1 |
#Linear Constraintsⓘ | 1 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | exp mul sqr |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 2 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 16 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 4 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 4 |
Maximal blocksize in Hessian of Lagrangianⓘ | 4 |
Average blocksize in Hessian of Lagrangianⓘ | 4.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.2700e-02 |
Maximal coefficientⓘ | 1.0000e+01 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 2 1 0 1 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 5 5 0 0 0 0 0 0 * FX 2 * * Nonzero counts * Total const NL DLL * 7 3 4 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,objvar,x4,x5; Positive Variables x1,x2; Equations e1,e2; e1.. x1 - x2 =L= 0; e2.. -(sqr((-1.9837) + x4 + x5) + sqr((-0.8393) + exp(-x1)*x4 + exp(-x2)*x5) + sqr((-0.4305) + exp(-2*x1)*x4 + exp(-2*x2)*x5) + sqr((-0.2441) + exp(-3*x1 )*x4 + exp(-3*x2)*x5) + sqr((-0.1248) + exp(-4*x1)*x4 + exp(-4*x2)*x5) + sqr((-0.0981) + exp(-5*x1)*x4 + exp(-5*x2)*x5) + sqr((-0.0549) + exp(-6*x1 )*x4 + exp(-6*x2)*x5) + sqr((-0.0174) + exp(-7*x1)*x4 + exp(-7*x2)*x5) + sqr((-0.0249) + exp(-8*x1)*x4 + exp(-8*x2)*x5) + sqr((-0.0154) + exp(-9*x1 )*x4 + exp(-9*x2)*x5) + sqr((-0.0127) + exp(-10*x1)*x4 + exp(-10*x2)*x5)) + objvar =E= 0; * set non-default bounds x1.up = 100; x2.up = 100; x4.fx = 1; x5.fx = 1; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91