MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance st_glmp_kk90

Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
4.00000000 p1 ( gdx sol )
(infeas: 0)
3.00000000 p2 ( gdx sol )
(infeas: 7e-12)
Other points (infeas > 1e-08)  
Dual Bounds
3.00000000 (ANTIGONE)
3.00000000 (BARON)
3.00000000 (COUENNE)
3.00000000 (CPLEX)
3.00000000 (GUROBI)
3.00000000 (LINDO)
3.00000000 (SCIP)
References Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002.
Konno, H and Kuno, T, Linear multiplicative programming, Mathematical Programming, 56:1, 1992, 51-64.
Added to library 03 Sep 2002
Problem type QP
#Variables 5
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 2
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type quadratic
Objective curvature indefinite
#Nonzeros in Objective 3
#Nonlinear Nonzeros in Objective 2
#Constraints 7
#Linear Constraints 7
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature linear
#Nonzeros in Jacobian 16
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 2
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 3.0000e+00
Infeasibility of initial point 2
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          8        4        1        3        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          6        6        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*         20       18        2        0
*
*  Solve m using NLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,objvar;

Positive Variables  x1;

Equations  e1,e2,e3,e4,e5,e6,e7,e8;


e1..    2*x1 + 3*x2 =G= 9;

e2..    3*x1 - x2 =L= 8;

e3..  - x1 + 2*x2 =L= 8;

e4..    x1 + 2*x2 =L= 12;

e5.. -x4*x5 - x3 + objvar =E= 0;

e6..    x1 - x3 =E= 0;

e7..    x1 - x2 - x4 =E= -5;

e8..    x1 + x2 - x5 =E= 1;

* set non-default bounds
x1.up = 12;
x2.lo = 3; x2.up = 6;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0