MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance st_glmp_ss1
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -24.57142860 (ANTIGONE) -24.57142860 (BARON) -24.57142858 (COUENNE) -24.57142857 (CPLEX) -24.57143490 (GUROBI) -24.57142893 (LINDO) -24.57142857 (SCIP) |
Referencesⓘ | Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. Schaible, S and Sodini, C, Finite algorithm for generalized linear multiplicative programming, Journal of Optimization Theory and Applications, 87:2, 1995, 441-455. |
Added to libraryⓘ | 03 Sep 2002 |
Problem typeⓘ | QP |
#Variablesⓘ | 5 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 2 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 3 |
#Nonlinear Nonzeros in Objectiveⓘ | 2 |
#Constraintsⓘ | 11 |
#Linear Constraintsⓘ | 11 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 24 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 2 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 4.0000e+00 |
Infeasibility of initial pointⓘ | 12 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 12 4 0 8 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 6 6 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 28 26 2 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,objvar,x4,x5,x6; Positive Variables x1,x2; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12; e1.. x1 - 2*x2 =L= 100; e2.. - 3*x1 - 4*x2 =L= -12; e3.. - x1 - x2 =L= 100; e4.. - x1 + 4*x2 =L= 100; e5.. - x1 + 2*x2 =L= 18; e6.. 3*x1 + 4*x2 =L= 100; e7.. x1 + x2 =L= 13; e8.. x1 - 4*x2 =L= 8; e9.. x1 - x4 =E= 0; e10.. x1 - x2 - x5 =E= -10; e11.. x1 + x2 - x6 =E= 6; e12.. -x5*x6 + objvar - x4 =E= 0; * set non-default bounds x1.up = 13; x2.up = 13; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91