MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance st_m1
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -461356.93930000 (ANTIGONE) -461356.93930000 (BARON) -461356.93900000 (COUENNE) -461356.93890000 (CPLEX) -461356.93890000 (GUROBI) -461356.93890000 (LINDO) -461356.94200000 (SCIP) |
Referencesⓘ | Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. Shectman, J P and Sahinidis, N V, A finite algorithm for global minimization of separable concave programs, Journal of Global Optimization, 12:1, 1998, 1-36. Shectman, J P, Finite Algorithms for Global Optimization of Concave Programs and General Quadratic Programs, PhD thesis, Department of Mechanical and Industrial Engineering, University of Illinois, Urbana Champagne, 1999. |
Added to libraryⓘ | 03 Sep 2002 |
Problem typeⓘ | QP |
#Variablesⓘ | 20 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 20 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | concave |
#Nonzeros in Objectiveⓘ | 20 |
#Nonlinear Nonzeros in Objectiveⓘ | 20 |
#Constraintsⓘ | 11 |
#Linear Constraintsⓘ | 11 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 205 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 20 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 20 |
#Blocks in Hessian of Lagrangianⓘ | 20 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 4.1204e-02 |
Maximal coefficientⓘ | 1.6413e+04 |
Infeasibility of initial pointⓘ | 23 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 12 1 0 11 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 21 21 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 226 206 20 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12; e1.. - 6*x1 + x2 + x3 - 3*x4 - 9*x5 - 7*x6 - x8 + 3*x9 + 7*x10 + x11 + 7*x12 + 4*x13 - 2*x14 - 2*x15 + 3*x16 + 8*x17 - 3*x18 - 6*x19 - x20 =L= 5; e2.. - 9*x1 + 3*x2 - 8*x3 + 3*x4 + 3*x5 - 5*x7 + 9*x8 + 5*x9 - 2*x10 + 6*x11 - 7*x12 + 9*x13 - 7*x15 - 7*x16 - x17 - 5*x18 + 4*x19 + 9*x20 =L= 8; e3.. 4*x1 - 10*x2 + 3*x3 + 5*x4 + 8*x5 + 8*x6 - 8*x7 - 9*x8 + 5*x9 + 7*x10 - 9*x11 - 6*x12 - 5*x13 - 7*x14 + x15 + 3*x16 - 7*x17 - 7*x18 + 8*x19 + 3*x20 =L= -5; e4.. 4*x1 - 2*x2 - 2*x3 + 10*x4 - 5*x5 + 8*x6 + 9*x7 + 5*x8 + 10*x9 - 5*x10 + x11 + 4*x12 - 6*x13 + 2*x14 - 5*x15 + 2*x16 + 9*x17 + 6*x18 - 5*x19 - x20 =L= 49; e5.. 9*x1 - 9*x2 + 4*x3 - 3*x4 - x5 - 9*x6 - 9*x7 + 5*x8 + 8*x9 - 2*x10 - 7*x12 - 4*x13 + 7*x14 + 6*x16 - 2*x17 - x18 + 7*x19 + 6*x20 =L= 17; e6.. - 2*x1 - 2*x2 + 8*x3 - 5*x4 + 5*x5 + 8*x6 + 7*x8 - 5*x9 + x10 + 9*x11 - 8*x12 + 8*x13 + 2*x14 - x15 - 5*x16 - 7*x17 - 3*x18 - x19 + 4*x20 =L= 22; e7.. 4*x2 + 5*x3 + 10*x4 - 2*x7 - 7*x8 - 4*x9 - x10 + 5*x11 - 5*x12 + 3*x13 + 9*x14 + 9*x15 + 8*x17 - x18 + 4*x20 =L= 46; e8.. 7*x1 + 2*x2 - 5*x3 + 4*x4 - 5*x5 - 4*x7 - 10*x8 - 3*x9 - 4*x10 + x11 - 10*x12 - 7*x13 + x14 - 7*x15 - 2*x16 - 8*x17 + 6*x18 + 2*x19 + 10*x20 =L= -23; e9.. - 9*x1 + 9*x2 - 9*x3 + 5*x4 - 5*x5 - 4*x6 + 8*x7 + 4*x8 - 6*x10 + 8*x11 - 2*x12 + 4*x13 - 7*x14 - 6*x15 - 6*x16 - 7*x17 + 9*x18 + 6*x19 + 9*x20 =L= 11; e10.. 3*x1 + 5*x2 + 5*x3 + x4 + 4*x5 + 6*x6 + 9*x7 + 5*x8 + 7*x9 + 9*x10 + 7*x11 + 8*x12 + 7*x13 + 7*x14 + 9*x16 + 5*x17 + 5*x18 + x19 + 7*x20 =L= 1210; e11.. 0.123612846515*x1 + 0.164817128686*x2 - 0.247225693029*x3 + 0.329634257372*x4 + 0.288429975201*x5 + 0.329634257372*x6 + 0.0412042821715*x7 - 0.288429975201*x8 - 0.0412042821715*x9 + 0.412042821715*x10 - 0.247225693029*x11 - 0.0412042821715*x12 - 0.164817128686*x13 + 0.329634257372*x15 - 0.0412042821715*x16 - 0.0412042821715*x17 + 0.247225693029*x18 - 0.123612846515*x19 - 0.247225693029*x20 =L= -5.52216398993; e12.. -(540.792129732*x1 - 3*sqr(x1) - sqr(x2) + 92.0068003629*x2 - 7*sqr(x3) - 2390.75252039*x3 - 7*sqr(x4) - 8085.40130479*x4 - 9*sqr(x5) - 4627.10173328*x5 - 4*sqr(x6) - 12452.7098353*x6 - 6*sqr(x7) + 9419.17874069*x7 - 8*sqr(x8) + 7689.14130566*x8 - sqr(x9) - 5154.76865125 *x9 - sqr(x10) - 9814.99860313*x10 - 6*sqr(x11) - 3701.15304202*x11 - 7* sqr(x12) + 12818.4489533*x12 - sqr(x13) - 7825.52846743*x13 - 4*sqr(x14) - 52.6053189782*x14 - 2*sqr(x15) + 6727.68114413*x15 - 5*sqr(x16) + 6093.30280299*x16 - 7*sqr(x17) - 1139.49658357*x17 - 6*sqr(x18) + 7666.77668727*x18 - 9*sqr(x19) + 7371.88647018*x19 - 9*sqr(x20) - 16412.9116807*x20) + objvar =E= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91