MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance st_m2
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -856648.82540000 (ANTIGONE) -856648.81950000 (BARON) -856648.81910000 (COUENNE) -856648.81870000 (CPLEX) -856648.81870000 (GUROBI) -856648.81870000 (LINDO) -856648.84610000 (SCIP) |
Referencesⓘ | Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. Shectman, J P and Sahinidis, N V, A finite algorithm for global minimization of separable concave programs, Journal of Global Optimization, 12:1, 1998, 1-36. Shectman, J P, Finite Algorithms for Global Optimization of Concave Programs and General Quadratic Programs, PhD thesis, Department of Mechanical and Industrial Engineering, University of Illinois, Urbana Champagne, 1999. |
Added to libraryⓘ | 03 Sep 2002 |
Problem typeⓘ | QP |
#Variablesⓘ | 30 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 30 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | concave |
#Nonzeros in Objectiveⓘ | 30 |
#Nonlinear Nonzeros in Objectiveⓘ | 30 |
#Constraintsⓘ | 21 |
#Linear Constraintsⓘ | 21 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 592 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 30 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 30 |
#Blocks in Hessian of Lagrangianⓘ | 30 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.9148e-02 |
Maximal coefficientⓘ | 1.1930e+05 |
Infeasibility of initial pointⓘ | 36.23 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 22 1 0 21 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 31 31 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 623 593 30 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22; e1.. - 6*x1 + x2 - 9*x3 + 3*x5 + x6 + 4*x7 - 2*x8 + 8*x9 - 6*x10 - 4*x11 - 6*x13 + 3*x14 + 6*x15 + 2*x16 + x17 + 9*x18 + 8*x19 - 10*x20 - 4*x21 - 7*x22 - 8*x23 - x24 + 5*x25 - 7*x26 + 10*x27 - 3*x28 - 6*x29 - 7*x30 =L= -5; e2.. - 9*x1 - 8*x2 + 3*x3 - 5*x4 + 5*x5 + 6*x6 + 9*x7 - 7*x8 - x9 + 4*x10 + x11 + 3*x12 + 10*x13 - 6*x14 - 7*x15 - 5*x16 - 4*x17 - x18 - 5*x19 + 6*x21 - 4*x22 + 9*x23 - 5*x24 + 9*x25 + 5*x26 - x27 + 4*x28 + 6*x29 + 6*x30 =L= 37; e3.. 4*x1 + 3*x2 + 8*x3 - 8*x4 + 5*x5 - 9*x6 - 5*x7 + x8 - 7*x9 + 8*x10 + 4*x12 - 7*x13 - 6*x14 - 2*x15 - 4*x16 + 2*x17 + 9*x18 + 9*x19 - 8*x20 - 3*x21 + 7*x22 - 6*x23 + 3*x24 - 5*x25 - 7*x26 - 3*x27 + 2*x28 + x29 + 9*x30 =L= 12; e4.. 4*x1 - 2*x2 - 5*x3 + 9*x4 + 10*x5 + x6 - 6*x7 - 5*x8 + 9*x9 - 5*x10 - 8*x11 - 6*x12 + 3*x13 - 8*x14 + 2*x15 + 4*x16 - 4*x18 - 5*x19 - 7*x20 + 4*x21 + 4*x22 - 3*x23 - 8*x24 - 3*x25 - 9*x26 - x27 + 7*x28 + 3*x29 - 7*x30 =L= -11; e5.. 9*x1 + 4*x2 - x3 - 9*x4 + 8*x5 - 4*x7 - 2*x9 + 7*x10 - 2*x11 + 8*x12 + 2*x13 - 2*x14 - 6*x15 - 8*x16 - x17 - x18 + 7*x19 + 8*x20 - 4*x21 + 2*x22 + 2*x23 - 6*x24 + 5*x25 + 3*x26 + 5*x27 + 5*x28 + 7*x29 + 2*x30 =L= 59; e6.. - 2*x1 + 8*x2 + 5*x3 - 5*x5 + 9*x6 + 8*x7 - x8 - 7*x9 - x10 + 2*x11 + 7*x12 - 10*x13 + 9*x14 + 7*x15 + 5*x16 - 5*x17 + 4*x19 + 6*x20 - 10*x21 + 4*x22 + 2*x23 - 8*x24 - 8*x26 - 6*x27 + 7*x28 - 5*x29 - 9*x30 =L= 26; e7.. 5*x2 - 2*x4 - 4*x5 + 5*x6 + 3*x7 + 9*x8 + 8*x9 + 8*x11 + 8*x12 - 10*x13 + 9*x14 - 7*x15 + x16 - 3*x17 + 3*x18 - x19 + 5*x20 - 8*x21 - 3*x22 - 7*x23 + x24 + 5*x25 + 9*x26 - 7*x27 + 4*x28 + 4*x29 - 3*x30 =L= 51; e8.. 7*x1 - 5*x2 - 5*x3 - 4*x4 - 3*x5 + x6 - 7*x7 - 7*x8 - 8*x9 + 2*x10 - x11 + x12 + 5*x13 - 2*x14 + 10*x15 + x16 - 2*x17 - 2*x18 + 6*x19 - x20 - 9*x22 + x23 - 10*x24 + 3*x25 - 3*x27 - 2*x28 - 5*x29 - 4*x30 =L= -24; e9.. - 9*x1 - 9*x2 - 5*x3 + 8*x4 + 8*x6 + 4*x7 - 6*x8 - 7*x9 + 6*x10 + 5*x11 - 7*x12 + 5*x13 - 5*x14 - 5*x15 + 2*x16 - x17 + 2*x18 - 10*x19 - 10*x20 + 6*x21 + 10*x22 + 9*x23 - 6*x24 + 4*x25 + 2*x26 + 9*x27 + 9*x28 - 2*x29 =L= 25; e10.. - 9*x1 + 5*x2 - 3*x3 + x4 + 2*x5 + 2*x6 - 2*x7 - 4*x8 - 9*x9 + 5*x10 + 7*x11 - x12 - 4*x13 + 4*x14 - 5*x15 - 3*x16 + 10*x18 - 7*x19 + 2*x20 - 6*x21 + x22 - 3*x23 + 2*x24 + 5*x25 + 8*x26 + 9*x27 + 2*x28 - 8*x29 + 7*x30 =L= 27; e11.. x1 - 3*x2 - 7*x3 - x4 + 7*x5 + 7*x6 - 2*x7 + 3*x8 - 3*x9 - x10 + 4*x11 + 10*x12 - 2*x13 - 4*x14 - 8*x15 + 4*x16 - 2*x17 - 7*x18 + 4*x19 - 9*x21 - 10*x22 + 7*x23 - x24 - 9*x25 - 10*x26 - 5*x27 - 3*x28 - x29 + 7*x30 =L= -15; e12.. 3*x1 + 3*x2 + 9*x4 - 2*x5 - 7*x6 - 7*x8 - 5*x9 + 9*x10 + 6*x11 - 6*x12 + 4*x13 + 6*x14 - 6*x15 - 7*x16 - 4*x17 + 3*x18 + 4*x19 - 9*x20 - 9*x21 + 7*x22 + 9*x23 - 8*x24 - 5*x25 + 2*x26 - 9*x27 + x28 - 5*x29 + 5*x30 =L= 1; e13.. - 10*x1 + 5*x2 + 8*x3 - 9*x4 + 7*x5 - 6*x6 - 7*x7 + 3*x8 - 7*x9 + 3*x10 + 4*x11 - x12 + 4*x13 + 6*x14 + 3*x15 - 7*x16 - 8*x17 - 3*x18 - x19 + x20 - 7*x21 - 9*x22 - 5*x23 + 4*x24 - 6*x25 + 4*x26 - 8*x27 - x28 + 6*x29 - 3*x30 =L= -22; e14.. - 2*x1 + 10*x2 + 8*x3 + 5*x4 - 5*x5 + 4*x6 + 2*x7 + 2*x8 + 6*x9 - x10 + 5*x11 - 4*x12 - 6*x13 - 2*x14 + 4*x15 - 3*x17 + x18 + 2*x19 - 2*x20 + 4*x21 - 2*x22 - 5*x23 - 2*x24 + x25 + x27 - 2*x28 + 6*x30 =L= 44; e15.. - 9*x1 - 3*x2 - 9*x3 + 5*x4 - 2*x5 - 7*x6 + 7*x7 + 6*x8 - x9 + 6*x10 - 10*x11 + 7*x13 - 4*x14 + 6*x15 + 7*x16 - 5*x17 + 5*x19 - 6*x20 - 4*x21 - 2*x23 + 7*x24 + 3*x25 - 9*x26 - 7*x27 - 5*x28 - 10*x29 + 3*x30 =L= -9; e16.. - 2*x1 - 5*x2 + 8*x3 + 7*x4 + x5 - 8*x6 + 2*x7 - 5*x8 - 3*x9 + 4*x10 + 8*x11 + 8*x12 + 4*x13 - 6*x14 + 4*x15 + 6*x16 + 3*x17 + 7*x18 + 10*x19 - 2*x20 - 9*x21 + 2*x22 + 6*x23 - 8*x24 + 2*x25 - x26 - 8*x28 - 5*x29 - 9*x30 =L= 29; e17.. 4*x1 + 10*x2 - 7*x4 - x5 - 5*x6 + 9*x7 - x9 + 4*x10 - x12 + 7*x13 - 10*x14 + 5*x15 + x16 + 4*x17 - 10*x18 + 4*x19 + 3*x20 + 5*x22 + 8*x23 + 9*x24 - 3*x25 - 8*x27 - 2*x28 + 3*x29 - 9*x30 =L= 39; e18.. 2*x1 + 4*x2 - 10*x4 - 4*x5 - 10*x6 + x7 - 2*x8 + 6*x9 + 10*x10 - x11 - x12 - 8*x13 - 6*x14 + 3*x15 + 5*x16 - 5*x18 - 4*x19 + 3*x20 - x21 + 4*x22 - 5*x23 - 9*x24 - 6*x25 + 5*x26 + 7*x27 - x28 - x29 - 7*x30 =L= -10; e19.. 9*x1 + 5*x2 - 4*x3 + 4*x4 - 6*x5 - 2*x6 - 7*x7 - 6*x8 + 9*x9 + 9*x10 - 9*x11 + 6*x12 - 8*x13 + 10*x14 + 3*x15 - 4*x16 + 5*x17 + 3*x18 + 5*x19 + 4*x20 + x22 + 5*x23 - 8*x24 - 5*x25 - 9*x26 - 3*x27 - 4*x28 - 6*x29 + 5*x30 =L= 20; e20.. 5*x1 + 9*x2 + 2*x3 + 2*x4 + x5 + 7*x6 + 7*x7 + 5*x8 + 3*x9 + 7*x10 + 4*x11 + 2*x12 + 2*x13 + 4*x14 + 5*x15 + 9*x16 + 10*x17 + 5*x18 + x19 + 5*x20 + x21 + 8*x22 + 6*x23 + 8*x24 + 3*x25 + 2*x26 + 5*x27 + 4*x28 + 4*x29 + 10*x30 =L= 1680; e21.. 0.20403741*x1 + 0.20403741*x2 - 0.1165928*x3 - 0.2040374*x4 + 0.29148202*x5 + 0.08744461*x6 - 0.0291482*x7 + 0.26233382*x8 + 0.11659281*x9 + 0.17488921*x10 + 0.0291482*x11 + 0.0291482*x12 - 0.2040374*x13 + 0.26233382*x14 + 0.17488921*x15 - 0.2040374*x16 - 0.2623338*x17 - 0.0874446*x18 - 0.2331856*x19 - 0.2331856*x20 - 0.291482*x22 + 0.0291482*x23 + 0.20403741*x24 + 0.08744461*x26 + 0.14574101*x27 + 0.11659281*x28 - 0.291482*x29 - 0.1748892*x30 =L= -36.228832; e22.. -(14571.3167*x1 - 3*sqr(x1) - sqr(x2) - 37250.204*x2 - 7*sqr(x3) + 1578.40997*x3 - 7*sqr(x4) - 23199.31*x4 - 9*sqr(x5) - 36532.101*x5 - 4* sqr(x6) + 14991.9969*x6 - 6*sqr(x7) - 46241.855*x7 - 8*sqr(x8) + 59634.0121*x8 - sqr(x9) + 11781.1616*x9 - sqr(x10) - 62617.461*x10 - 6* sqr(x11) + 23226.6837*x11 - 7*sqr(x12) - 16497.431*x12 - sqr(x13) + 350.55924*x13 - 4*sqr(x14) + 25674.7606*x14 - 2*sqr(x15) + 56334.3262*x15 - 5*sqr(x16) - 2159.2486*x16 - 7*sqr(x17) + 30150.9571*x17 - 6*sqr(x18) - 13688.295*x18 - 9*sqr(x19) - 41755.296*x19 - 9*sqr(x20) + 34911.6548* x20 - 6*sqr(x21) + 104801.315*x21 - 2*sqr(x22) - 47888.471*x22 - 7*sqr( x23) - 10644.315*x23 - 5*sqr(x24) + 119299.448*x24 - 7*sqr(x25) + 27859.4823*x25 - 9*sqr(x26) + 89793.8375*x26 - 8*sqr(x27) + 108734.2*x27 - 3*sqr(x28) - 31798.43*x28 - sqr(x29) + 15961.706*x29 - 8*sqr(x30) - 5450.7111*x30) + objvar =E= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91