MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance st_qpc-m3a
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | -382.69500040 (ANTIGONE) -382.69500000 (BARON) -382.69502280 (COUENNE) -382.69500000 (CPLEX) -382.69500000 (GUROBI) -382.69501580 (LINDO) -382.69501820 (SCIP) |
Referencesⓘ | Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. Shectman, J P, Finite Algorithms for Global Optimization of Concave Programs and General Quadratic Programs, PhD thesis, Department of Mechanical and Industrial Engineering, University of Illinois, Urbana Champagne, 1999. |
Sourceⓘ | BARON book instance iqp/qpc-m3a |
Added to libraryⓘ | 03 Sep 2002 |
Problem typeⓘ | QP |
#Variablesⓘ | 10 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 10 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | concave |
#Nonzeros in Objectiveⓘ | 10 |
#Nonlinear Nonzeros in Objectiveⓘ | 10 |
#Constraintsⓘ | 10 |
#Linear Constraintsⓘ | 10 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 97 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 100 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 10 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 10 |
Maximal blocksize in Hessian of Lagrangianⓘ | 10 |
Average blocksize in Hessian of Lagrangianⓘ | 10.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.0000e+00 |
Maximal coefficientⓘ | 2.8000e+02 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 11 1 0 10 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 11 11 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 108 98 10 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11; e1.. 20*x1 + 20*x2 + 60*x3 + 60*x4 + 60*x5 + 60*x6 + 5*x7 + 45*x8 + 55*x9 + 65*x10 =L= 600.1; e2.. 5*x1 + 7*x2 + 3*x3 + 8*x4 + 13*x5 + 13*x6 + 2*x7 + 14*x8 + 14*x9 + 14*x10 =L= 310.5; e3.. 100*x1 + 130*x2 + 50*x3 + 70*x4 + 70*x5 + 70*x6 + 20*x7 + 80*x8 + 80*x9 + 80*x10 =L= 1800; e4.. 200*x1 + 280*x2 + 100*x3 + 200*x4 + 250*x5 + 280*x6 + 100*x7 + 180*x8 + 200*x9 + 220*x10 =L= 3850; e5.. 2*x1 + 2*x2 + 4*x3 + 4*x4 + 4*x5 + 4*x6 + 2*x7 + 6*x8 + 6*x9 + 6*x10 =L= 18.6; e6.. 4*x1 + 8*x2 + 2*x3 + 6*x4 + 10*x5 + 10*x6 + 5*x7 + 10*x8 + 10*x9 + 10*x10 =L= 198.7; e7.. 60*x1 + 110*x2 + 20*x3 + 40*x4 + 60*x5 + 70*x6 + 10*x7 + 40*x8 + 50*x9 + 50*x10 =L= 882; e8.. 150*x1 + 210*x2 + 40*x3 + 70*x4 + 90*x5 + 105*x6 + 60*x7 + 100*x8 + 140*x9 + 180*x10 =L= 4200; e9.. 80*x1 + 100*x2 + 6*x3 + 16*x4 + 20*x5 + 22*x6 + 20*x8 + 30*x9 + 30*x10 =L= 40.25; e10.. 40*x1 + 40*x2 + 12*x3 + 20*x4 + 24*x5 + 28*x6 + 40*x9 + 50*x10 =L= 327 ; e11.. -(10*x1 - 6.8*x1*x1 - 4.6*x1*x2 + 10*x2 - 7.9*x1*x3 + 10*x3 - 5.1*x1*x4 + 10*x4 - 6.9*x1*x5 + 10*x5 - 6.8*x1*x6 + 10*x6 - 4.6*x1*x7 + 10*x7 - 7.9*x1*x8 + 10*x8 - 5.1*x1*x9 + 10*x9 - 6.9*x1*x10 + 10*x10 - 4.6*x2*x1 - 5.5*x2*x2 - 5.8*x2*x3 - 4.5*x2*x4 - 6*x2*x5 - 4.6*x2*x6 - 5.5*x2*x7 - 5.8*x2*x8 - 4.5*x2*x9 - 6*x2*x10 - 7.9*x3*x1 - 5.8*x3*x2 - 13.3*x3*x3 - 6.7*x3*x4 - 8.9*x3*x5 - 7.9*x3*x6 - 5.8*x3*x7 - 13.3*x3*x8 - 6.7*x3*x9 - 8.9*x3*x10 - 5.1*x4*x1 - 4.5*x4*x2 - 6.7*x4*x3 - 6.9*x4*x4 - 5.8*x4*x5 - 5.1*x4*x6 - 4.5*x4*x7 - 6.7*x4*x8 - 6.9*x4*x9 - 5.8*x4*x10 - 6.9*x5*x1 - 6*x5*x2 - 8.9*x5*x3 - 5.8*x5*x4 - 11.9*x5*x5 - 6.9*x5*x6 - 6*x5*x7 - 8.9* x5*x8 - 5.8*x5*x9 - 11.9*x5*x10 - 6.8*x6*x1 - 4.6*x6*x2 - 7.9*x6*x3 - 5.1 *x6*x4 - 6.9*x6*x5 - 6.8*x6*x6 - 4.6*x6*x7 - 7.9*x6*x8 - 5.1*x6*x9 - 6.9* x6*x10 - 4.6*x7*x1 - 5.5*x7*x2 - 5.8*x7*x3 - 4.5*x7*x4 - 6*x7*x5 - 4.6*x7 *x6 - 5.5*x7*x7 - 5.8*x7*x8 - 4.5*x7*x9 - 6*x7*x10 - 7.9*x8*x1 - 5.8*x8* x2 - 13.3*x8*x3 - 6.7*x8*x4 - 8.9*x8*x5 - 7.9*x8*x6 - 5.8*x8*x7 - 13.3*x8 *x8 - 6.7*x8*x9 - 8.9*x8*x10 - 5.1*x9*x1 - 4.5*x9*x2 - 6.7*x9*x3 - 6.9*x9 *x4 - 5.8*x9*x5 - 5.1*x9*x6 - 4.5*x9*x7 - 6.7*x9*x8 - 6.9*x9*x9 - 5.8*x9* x10 - 6.9*x10*x1 - 6*x10*x2 - 8.9*x10*x3 - 5.8*x10*x4 - 11.9*x10*x5 - 6.9 *x10*x6 - 6*x10*x7 - 8.9*x10*x8 - 5.8*x10*x9 - 11.9*x10*x10) + objvar =E= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91